Step decoration of chiral metal surfaces

被引:34
作者
Han, Jeong Woo [1 ]
Kitchin, John R. [2 ]
Sholl, David S. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
adsorbed layers; adsorption; chirality; copper; density functional theory; enthalpy; entropy; impurities; iridium; palladium; rhodium; silver; surface segregation; DENSITY-FUNCTIONAL THEORY; BINARY SOLID-SOLUTIONS; PALLADIUM-CATALYZED HYDROSILYLATION; MOLECULAR-DYNAMICS SIMULATIONS; RACEMIC ALANINE ADLAYERS; ENANTIOSELECTIVE HYDROGENATION; ENANTIOSPECIFIC ADSORPTION; DIASTEREOSELECTIVE HYDROGENATION; SEGREGATION ENERGIES; ELECTRONIC-STRUCTURE;
D O I
10.1063/1.3096964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly stepped metal surfaces can define intrinsically chiral structures and these chiral surfaces can potentially be used to separate chiral molecules. The decoration of steps on these surfaces with additional metal atoms is one potential avenue for improving the enantiospecificity of these surfaces. For a successful step decoration, the additional metal atoms should ideally remain at the kinked step sites on the surface. We performed density functional theory (DFT) calculations to identify pairs of metal adatoms and metal surfaces where this kind of step decoration could be thermodynamically stable. These calculations have identified multiple stable examples of step decoration. Using our DFT results, we developed a model to predict surface segregation on a wide range of stepped metal surfaces. With this model, we have estimated the stability of step decoration without further DFT calculations for surface segregation for all combinations of the 3d, 4d, and 5d metals.
引用
收藏
页数:8
相关论文
共 82 条
[61]   Structure of enantiopure and racemic alanine adlayers on Cu(110) [J].
Rankin, RB ;
Sholl, DS .
SURFACE SCIENCE, 2005, 574 (01) :L1-L8
[62]   Assessment of heterochiral and homochiral glycine adlayers on Cu(110) using density functional theory [J].
Rankin, RB ;
Sholl, DS .
SURFACE SCIENCE, 2004, 548 (1-3) :301-308
[63]   The chemical potential in surface segregation calculations:: AgPd alloys [J].
Ropo, M ;
Kokko, K ;
Vitos, L ;
Kollár, J ;
Johansson, B .
SURFACE SCIENCE, 2006, 600 (04) :904-913
[64]   Segregation at the PdAg(111) surface:: Electronic structure calculations -: art. no. 045411 [J].
Ropo, M ;
Kokko, K ;
Vitos, L ;
Kollár, J .
PHYSICAL REVIEW B, 2005, 71 (04)
[65]   Surface electronic structure and reactivity of transition and noble metals [J].
Ruban, A ;
Hammer, B ;
Stoltze, P ;
Skriver, HL ;
Norskov, JK .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1997, 115 (03) :421-429
[66]   Surface segregation energies in transition-metal alloys [J].
Ruban, AV ;
Skriver, HL ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (24) :15990-16000
[67]   Calculated surface segregation in transition metal alloys [J].
Ruban, AV ;
Skriver, HL .
COMPUTATIONAL MATERIALS SCIENCE, 1999, 15 (02) :119-143
[68]   SELF-CONSISTENT ELECTRONIC-STRUCTURE AND SEGREGATION PROFILES OF THE CU-NI (001) RANDOM-ALLOY SURFACE [J].
RUBAN, AV ;
ABRIKOSOV, IA ;
KATS, DY ;
GORELIKOV, D ;
JACOBSEN, KW ;
SKRIVER, HL .
PHYSICAL REVIEW B, 1994, 49 (16) :11383-11396
[69]   Magnetic contribution to the segregation energies in magnetic-nonmagnetic systems [J].
Saúl, A ;
Weissmann, M .
PHYSICAL REVIEW B, 1999, 60 (07) :4982-4987
[70]   Probing enantioselectivity with x-ray photoelectron spectroscopy and density functional theory [J].
Schillinger, R. ;
Sljivancanin, Z. ;
Hammer, B. ;
Greber, T. .
PHYSICAL REVIEW LETTERS, 2007, 98 (13)