Exact solution of a generalized Kramers-Fokker-Planck equation retaining retardation effects

被引:42
作者
Friedrich, R.
Jenko, F.
Baule, A.
Eule, S.
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] Univ Leeds, Dept Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 04期
关键词
D O I
10.1103/PhysRevE.74.041103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In order to describe non-Gaussian kinetics in weakly damped systems, the concept of continuous time random walks is extended to particles with finite inertia. One thus obtains a generalized Kramers-Fokker-Planck equation, which retains retardation effects, i.e., nonlocal couplings in time and space. It is shown that despite this complexity, exact solutions of this equation can be given in terms of superpositions of Gaussian distributions with varying variances. In particular, the long-time behavior of the respective low-order moments is calculated.
引用
收藏
页数:13
相关论文
共 26 条
[1]  
Balescu R, 2005, SER PLASMA PHYS
[2]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[3]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]  
BAULE A, 2005, PHYS LETT A, V337, P224
[5]   VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
CASTAING, B ;
GAGNE, Y ;
HOPFINGER, EJ .
PHYSICA D, 1990, 46 (02) :177-200
[6]  
Coffey W. T., 2004, LANGEVIN EQUATION
[8]   Anomalous diffusion of inertial, weakly damped particles [J].
Friedrich, R. ;
Jenko, F. ;
Baule, A. ;
Eule, S. .
PHYSICAL REVIEW LETTERS, 2006, 96 (23)
[9]   Statistics of Lagrangian velocities in turbulent flows [J].
Friedrich, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4
[10]   MICRODYNAMICS AND NON-LINEAR STOCHASTIC-PROCESSES OF GROSS VARIABLES [J].
GRABERT, H ;
HANGGI, P ;
TALKNER, P .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (05) :537-552