Thermal conductivity of isotopically enriched 28Si:: revisited

被引:101
作者
Kremer, RK [1 ]
Graf, K
Cardona, M
Devyatykh, GG
Gusev, AV
Gibin, AM
Inyushkin, A
Taldenkov, A
Pohl, HJ
机构
[1] Max Planck Inst Festkorperforsch, Chemieserv, D-70569 Stuttgart, Germany
[2] Russian Acad Sci, Inst Chem High Pur Subst, Nizhnii Novgorod 603950, Russia
[3] Russian Res Ctr Kurchatov Inst, Moscow 123182, Russia
[4] VITCON Projectonconsult GmbH, D-07745 Jena, Germany
关键词
silicon; stable isotopes; thermal conductivity;
D O I
10.1016/j.ssc.2004.06.022
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The thermal conductivity of isotopically enriched Si-28 (enrichment better than 99.9%) was redetermined independently in three laboratories by high precision experiments on a total of four samples of different shape and degree of isotope enrichment in the range from 5 to 300 K with particular emphasis on the range near room temperature. The results obtained in the different laboratories are in good agreement with each other. They indicate that at room temperature the thermal conductivity of isotopically enriched 28 Si exceeds the thermal conductivity of Si with a natural, unmodified isotope mixture by 10 +/- 2%. This C Si reaches a maximum. finding is in disagreement with an earlier report by Ruf et al. At similar to26 K the thermal conductivity of 211 The maximum value depends on sample shape and the degree of isotope enrichment and exceeds the thermal conductivity of natural Si by a factor of similar to8 for a 99.982% Si-28 enriched sample. The thermal conductivity of Si with natural isotope composition is consistently found to be similar to3% lower than the values recommended in the literature. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 503
页数:5
相关论文
共 23 条
[1]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[2]  
Bulanov AD, 2000, CRYST RES TECHNOL, V35, P1023, DOI 10.1002/1521-4079(200009)35:9<1023::AID-CRAT1023>3.0.CO
[3]  
2-V
[4]  
BURDEN SI, 2001, SEMICONDUCTOR FABTEC, P297
[5]   Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon [J].
Capinski, WS ;
Maris, HJ ;
Tamura, S .
PHYSICAL REVIEW B, 1999, 59 (15) :10105-10110
[6]   Thermal conductivity of isotopically enriched Si [J].
Capinski, WS ;
Maris, HJ ;
Bauser, E ;
Silier, I ;
AsenPalmer, M ;
Ruf, T ;
Cardona, M ;
Gmelin, E .
APPLIED PHYSICS LETTERS, 1997, 71 (15) :2109-2111
[7]   ISOTOPIC AND OTHER TYPES OF THERMAL RESISTANCE IN GERMANIUM [J].
GEBALLE, TH ;
HULL, GW .
PHYSICAL REVIEW, 1958, 110 (03) :773-775
[8]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[9]  
GUSEV AV, 2002, INORG MATER, V38, P1305
[10]   Thermal conductivity of isotopically modified silicon: Current status of research [J].
Inyushkin, AV .
INORGANIC MATERIALS, 2002, 38 (05) :427-433