Testing for spatial clustering of amino acid replacements within protein tertiary structure

被引:11
作者
Yu, Jiaye [1 ]
Thorne, Jeffrey L. [1 ]
机构
[1] N Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27695 USA
关键词
protein tertiary structure; protein evolution; spatial clustering;
D O I
10.1007/s00239-005-0107-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Widely used models of protein evolution ignore protein structure. Therefore, these models do not predict spatial clustering of amino acid replacements with respect to tertiary structure. One formal and biologically implausible possibility is that there is no tendency for amino acid replacements to be spatially clustered during evolution. An alternative to this is that amino acid replacements are spatially clustered and this spatial clustering can be fully explained by a tendency for similar rates of amino acid replacement at sites that are nearby in protein tertiary structure. A third possibility is that the amount of clustering exceeds that which can be explained solely on the basis of independently evolving protein sites with spatially clustered replacement rates. We introduce two simple and not very parametric hypothesis tests that help distinguish these three possibilities. We then apply these tests to 273 homologous protein families. The null hypothesis of no spatial clustering is rejected for 102 of 273 families. The explanation of spatially clustered rates but independent change among sites is rejected for 43 families. These findings need to be reconciled with the common practice of basing evolutionary inferences on models that assume independent change among sites.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 39 条
[1]  
Adachi J, 1996, J MOL EVOL, V42, P459
[2]  
[Anonymous], 1978, Atlas of protein sequence and structure
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology [J].
Camon, E ;
Magrane, M ;
Barrell, D ;
Lee, V ;
Dimmer, E ;
Maslen, J ;
Binns, D ;
Harte, N ;
Lopez, R ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D262-D266
[6]   THE RELATION BETWEEN THE DIVERGENCE OF SEQUENCE AND STRUCTURE IN PROTEINS [J].
CHOTHIA, C ;
LESK, AM .
EMBO JOURNAL, 1986, 5 (04) :823-826
[7]  
DEN AM, 2000, PAC BIOINF S
[8]  
Felsenstein J., 1993, PHYLIP PHYLOGENY INF
[9]  
FELSENSTEIN J, 2004, INFERRING PHYLOGENEN
[10]   COMPARISON OF CONFORMATIONAL CHARACTERISTICS IN STRUCTURALLY SIMILAR PROTEIN PAIRS [J].
FLORES, TP ;
ORENGO, CA ;
MOSS, DS ;
THORNTON, JM .
PROTEIN SCIENCE, 1993, 2 (11) :1811-1826