Characterization and tribological evaluation of MW-PACVD diamond coatings deposited on pure titanium

被引:44
作者
Fu, YQ [1 ]
Yan, BB
Loh, NL
Sun, CQ
Hing, P
机构
[1] Nanyang Technol Univ, Mat Lab, Sch Mech & Prod Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Appl Sci, Singapore 639798, Singapore
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2000年 / 282卷 / 1-2期
关键词
diamond; MW-PACVD; titanium; tribology; wear; coefficient of friction;
D O I
10.1016/S0921-5093(99)00782-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium alloys are widely used in aerospace and biomedical conditions, however, they are notorious for the poor tribological properties. The deposition of a well adherent diamond coating is a promising way to solve this problem. Ln this study, diamond coatings were deposited on pure titanium using microwave plasma assisted chemical vapour deposition (MW-PACVD). Characterisation of diamond coatings was performed using scanning electron microscopy (SEM), laser profilometry, Raman spectroscopy, grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM). Tribological properties of diamond coatings were evaluated using a ball-on-disk wear tester (sliding with Al2O3 balls) and a scratch tester (sliding with diamond pin). Results showed that the friction and wear properties of polycrystalline diamond coatings as well as the wear of the counterface were dependent significantly on the surface roughness, the morphology and crystalline structure of diamond coatings as well as the counterface materials. For (111)-textured diamond coatings with rough surface and sharp asperities sliding with Al2O3 balls, the coefficient of friction was much higher than that of (100)-textured coatings, and the wear of the counterface material was quite high. After polishing the diamond coating, the surface roughness, coefficient of friction and wear of counterface decreased significantly. If sliding with diamond pins, the coefficient of friction of diamond coating shows a quite low and stable value. To improve the tribological properties, a three-step deposition method was proposed to obtain a smooth and nano-crystalline diamond layer on bulk diamond coatings. The so-formed diamond coating showed the highest load bearing capacity, the lowest coefficient of friction and the lowest wear of the counterface. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 39 条
[1]   [100]-textured diamond films for tribological applications [J].
Avigal, Y ;
Glozman, O ;
Etsion, I ;
Halperin, G ;
Hoffman, A .
DIAMOND AND RELATED MATERIALS, 1997, 6 (2-4) :381-385
[2]   RAMAN AND X-RAY STUDIES OF POLYCRYSTALLINE CVD DIAMOND FILMS [J].
BACHMANN, PK ;
BAUSEN, HD ;
LADE, H ;
LEERS, D ;
WIECHERT, DU ;
HERRES, N ;
KOHL, R ;
KOIDL, P .
DIAMOND AND RELATED MATERIALS, 1994, 3 (11-12) :1308-1314
[3]   TRIBOLOGICAL PROPERTIES OF POLISHED DIAMOND FILMS [J].
BHUSHAN, B ;
SUBRAMANIAM, VV ;
MALSHE, A ;
GUPTA, BK ;
RUAN, J .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (06) :4174-4180
[4]   TRIBOLOGICAL PROPERTIES OF TITANIUM-ALLOYS [J].
BUDINSKI, KG .
WEAR, 1991, 151 (02) :203-217
[5]   THE EFFECT OF ROUGHNESS ON THE FRICTION AND WEAR OF DIAMOND THIN-FILMS [J].
BULL, SJ ;
CHALKER, PR ;
JOHNSTON, C ;
MOORE, V .
SURFACE & COATINGS TECHNOLOGY, 1994, 68 :603-610
[6]   DIAMOND FOR WEAR AND CORROSION APPLICATIONS [J].
BULL, SJ ;
MATTHEWS, A .
DIAMOND AND RELATED MATERIALS, 1992, 1 (10-11) :1049-1064
[7]   DIAMOND - THE BIOMATERIAL OF THE 21ST-CENTURY [J].
DION, I ;
BAQUEY, C ;
MONTIES, JR .
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 1993, 16 (09) :623-627
[8]   Adhesion of diamond films on Ti-6Al-4V alloys [J].
Fan, WD ;
Jagannadham, K ;
Narayan, J .
SURFACE & COATINGS TECHNOLOGY, 1997, 91 (1-2) :32-36
[9]   Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition [J].
Fu, YQ ;
Yan, BB ;
Loh, NL ;
Sun, CQ ;
Hing, P .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (10) :2269-2283
[10]   FRICTION AND WEAR BEHAVIOR OF DIAMOND FILMS AGAINST STEEL AND CERAMICS [J].
GANGOPADHYAY, AK ;
TAMOR, MA .
WEAR, 1993, 169 (02) :221-229