Probability distribution functions of derivatives and increments for decaying Burgers turbulence

被引:22
作者
Bec, J [1 ]
Frisch, U [1 ]
机构
[1] Observ Cote Azur, CNRS UMR 6529, F-06304 Nice 4, France
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1395
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A Lagrangian method is used to show that the power law with a - 7/2 exponent in the negative tail of the probability distribution function (PDF) of the velocity gradient and of velocity increments, predicted by E et al. [Phys. Rev. Lett. 78, 1903 (1997)] for forced Burgers turbulence, is also present in the unforced case. The theory is extended to the second-order space derivative whose PDF has power-law tails with exponent -2 at both large positive and negative values and to the time derivatives. PDF's of space and time derivatives have the same (asymptotic) functional forms. This is interpreted in terms of a random Taylor hypothesis.
引用
收藏
页码:1395 / 1402
页数:8
相关论文
共 19 条
[1]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[2]  
BEC J, CHAODYN9910001
[3]   On the statistical solution of the Riemann equation and its implications for Burgers turbulence [J].
E, W ;
Vanden Eijnden, E .
PHYSICS OF FLUIDS, 1999, 11 (08) :2149-2153
[4]  
E WN, 1999, PHYS REV LETT, V83, P2572, DOI 10.1103/PhysRevLett.83.2572
[5]  
FOURNIER JD, 1983, J MEC THEOR APPL, V2, P699
[6]  
FRISCH U, CONDMAT9912110
[7]   Steady-state Burgers turbulence with large-scale forcing [J].
Gotoh, T ;
Kraichnan, RH .
PHYSICS OF FLUIDS, 1998, 10 (11) :2859-2866
[8]   Instantons in the Burgers equation [J].
Gurarie, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4908-4914
[9]  
GURVATOV SN, 1991, NONLINEAR RANDOM WAV
[10]  
KHANIN K, 1999, COMMUNICATION