[3] RIKEN, Yokohama Inst, Lab Genome Explorat, Res Grp,GSC,Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[4] RIKEN, Discovery & Res Inst, Genome Sci Lab, Wako Inst, Wako, Saitama 3510198, Japan
来源:
JOURNAL OF PHYSIOLOGY-LONDON
|
2006年
/
575卷
/
02期
关键词:
D O I:
10.1113/jphysiol.2006.115568
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
A comprehensive understanding of protein and regulatory networks is strictly dependent on the complete description of the transcriptome of cells. After the determination of the genome sequence of several mammalian species, gene identification is based on in silico predictions followed by evidence of transcription. Conservative estimates suggest that there are about 20 000 protein-encoding genes in the mammalian genome. In the last few years the combination of full-length cDNA cloning, cap-analysis gene expression (CAGE) tag sequencing and tiling arrays experiments have unveiled unexpected additional complexities in the transcriptome. Here we describe the current view of the mammalian transcriptome focusing on transcripts diversity, the growing non-coding RNA world, the organization of transcriptional units in the genome and promoter structures. In-depth analysis of the brain transcriptome has been challenging due to the cellular complexity of this organ. Here we present a computational analysis of CAGE data from different regions of the central nervous system, suggesting distinctive mechanisms of brain-specific transcription.
机构:
Univ Queensland, Inst Mol Biosci, Australian Res Council Special Res Ctr Funct & Ap, Brisbane, Qld 4072, AustraliaUniv Queensland, Inst Mol Biosci, Australian Res Council Special Res Ctr Funct & Ap, Brisbane, Qld 4072, Australia
机构:
Univ Queensland, Inst Mol Biosci, Australian Res Council Special Res Ctr Funct & Ap, Brisbane, Qld 4072, AustraliaUniv Queensland, Inst Mol Biosci, Australian Res Council Special Res Ctr Funct & Ap, Brisbane, Qld 4072, Australia