共 94 条
In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection
被引:156
作者:
Camejo, Ana
[1
]
Buchrieser, Carmen
[2
,3
]
Couve, Elisabeth
[4
]
Carvalho, Filipe
[1
]
Reis, Olga
[1
]
Ferreira, Pierre
[1
]
Sousa, Sandra
[1
]
Cossart, Pascale
[5
,6
,7
]
Cabanes, Didier
[1
]
机构:
[1] Univ Porto, IBMC, Grp Mol Microbiol, P-4100 Oporto, Portugal
[2] CNRS, URA 2171, Paris, France
[3] Inst Pasteur, UP Biol Bacteries Intracellulaires, Paris, France
[4] Inst Pasteur, CNRS, URA 2171, Unite Genet Genomes Bacteriens, Paris, France
[5] Inst Pasteur, Unite Interact Bacteries Cellules, Paris, France
[6] INSERM, U604, Paris, France
[7] USC2020, INRA, Paris, France
关键词:
PLASMID-BORNE CADMIUM;
RESPONSE REGULATOR;
GENE-EXPRESSION;
SUPEROXIDE-DISMUTASE;
COMPARATIVE GENOMICS;
SURFACE-PROTEINS;
RESISTANCE GENES;
STRESS-RESPONSE;
CELL-WALL;
BACTERIAL;
D O I:
10.1371/journal.ppat.1000449
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
Listeria monocytogenes is a human intracellular pathogen able to colonize host tissues after ingestion of contaminated food, causing severe invasive infections. In order to gain a better understanding of the nature of host-pathogen interactions, we studied the L. monocytogenes genome expression during mouse infection. In the spleen of infected mice, approximate to 20% of the Listeria genome is differentially expressed, essentially through gene activation, as compared to exponential growth in rich broth medium. Data presented here show that, during infection, Listeria is in an active multiplication phase, as revealed by the high expression of genes involved in replication, cell division and multiplication. In vivo bacterial growth requires increased expression of genes involved in adaptation of the bacterial metabolism and stress responses, in particular to oxidative stress. Listeria interaction with its host induces cell wall metabolism and surface expression of virulence factors. During infection, L. monocytogenes also activates subversion mechanisms of host defenses, including resistance to cationic peptides, peptidoglycan modifications and release of muramyl peptides. We show that the in vivo differential expression of the Listeria genome is coordinated by a complex regulatory network, with a central role for the PrfA-SigB interplay. In particular, L. monocytogenes up regulates in vivo the two major virulence regulators, PrfA and VirR, and their downstream effectors. Mutagenesis of in vivo induced genes allowed the identification of novel L. monocytogenes virulence factors, including an LPXTG surface protein, suggesting a role for S-layer glycoproteins and for cadmium efflux system in Listeria virulence.
引用
收藏
页数:22
相关论文