Making new beta cells from stem cells

被引:26
作者
Colman, A [1 ]
机构
[1] ES Cell Int, Singapore 117610, Singapore
关键词
ES; ductal; diabetes; insulin; cell therapy;
D O I
10.1016/j.semcdb.2004.02.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In 2000, Shapiro et al. provided compelling "proof of principle" data showing that the transplantation of human islets, purified from cadaveric material, could restore severely diabetic, Type 1 patients to insulin independence. This demonstration prompted renewed efforts to find an alternative and sustainable source of surrogate islet cells for cell therapy. Experiments involving adult ductal and liver "stem" cells, or embryonic stem cells, are prominent amongst these endeavors and are reviewed in this article. Whilst there are many published claims to success in converting ES cells into insulin secreting, glucose responsive cells, all require careful reinterpretation in the light of findings that cells can adsorb insulin present in growth media. It is likely that work with adult cells is less prone to this potential artifact and significant progress has been made in producing insulin-secreting cells. Assessment of in vivo function in the surrogate cells is most frequently made using cell transplantation into toxin-induced, diabetic mice, but this model is rarely used to maximal advantage. In many cases, it remains unclear whether reductions in the hyperglycemia result from insulin secretion from the transplanted cells or are due to recovery of endogenous islet function. In this latter context, experiments are reviewed where endogenous stimulation of recovery is engendered even by irradiated donor cells. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 34 条
[1]   Can stem cells cross lineage boundaries? [J].
Anderson, DJ ;
Gage, FH ;
Weissman, IL .
NATURE MEDICINE, 2001, 7 (04) :393-395
[2]   Insulin production by human embryonic stem cells [J].
Assady, S ;
Maor, G ;
Amit, M ;
Itskovitz-Eldor, J ;
Skorecki, KL ;
Tzukerman, M .
DIABETES, 2001, 50 (08) :1691-1697
[3]   The NOD mouse model of type 1 diabetes: As good as it gets? [J].
Atkinson, MA ;
Leiter, EH .
NATURE MEDICINE, 1999, 5 (06) :601-604
[4]   Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells [J].
Blyszczuk, P ;
Czyz, J ;
Kania, G ;
Wagner, M ;
Roll, U ;
St-Onge, L ;
Wobus, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :998-1003
[5]   In vitro cultivation of human islets from expanded ductal tissue [J].
Bonner-Weir, S ;
Taneja, M ;
Weir, GC ;
Tatarkiewicz, K ;
Song, KH ;
Sharma, A ;
O'Neil, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7999-8004
[6]   DIFFERENTIAL EXPRESSION OF THE 2 NONALLELIC PROINSULIN GENES IN THE DEVELOPING MOUSE EMBRYO [J].
DELTOUR, L ;
LEDUQUE, P ;
BLUME, N ;
MADSEN, O ;
DUBOIS, P ;
JAMI, J ;
BUCCHINI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :527-531
[7]   Pancreatic organogenesis - Developmental mechanisms and implications for therapy [J].
Edlund, H .
NATURE REVIEWS GENETICS, 2002, 3 (07) :524-532
[8]   Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia [J].
Ferber, S ;
Halkin, A ;
Cohen, H ;
Ber, I ;
Einav, Y ;
Goldberg, I ;
Barshack, I ;
Seijffers, R ;
Kopolovic, J ;
Kaiser, N ;
Karasik, A .
NATURE MEDICINE, 2000, 6 (05) :568-572
[9]   Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets [J].
Fernandes, A ;
King, LC ;
Guz, Y ;
Stein, R ;
Wright, CVE ;
Teitelman, G .
ENDOCRINOLOGY, 1997, 138 (04) :1750-1762
[10]   Gene and cell-replacement therapy in the treatment of type 1 diabetes -: How high must the standards be set? [J].
Halban, PA ;
Kahn, SE ;
Lernmark, Å ;
Rhodes, CJ .
DIABETES, 2001, 50 (10) :2181-2191