Efficient integration of heterogeneous single-cell transcriptomes using Scanorama

被引:474
作者
Hie, Brian [1 ]
Bryson, Bryan [2 ]
Berger, Bonnie [1 ,3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
PROJECTION; ATLAS; STEM; MAP;
D O I
10.1038/s41587-019-0113-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Integration of single-cell RNA sequencing (scRNA-seq) data from multiple experiments, laboratories and technologies can uncover biological insights, but current methods for scRNA-seq data integration are limited by a requirement for datasets to derive from functionally similar cells. We present Scanorama, an algorithm that identifies and merges the shared cell types among all pairs of datasets and accurately integrates heterogeneous collections of scRNA-seq data. We applied Scanorama to integrate and remove batch effects across 105,476 cells from 26 diverse scRNA-seq experiments representing 9 different technologies. Scanorama is sensitive to subtle temporal changes within the same cell lineage, successfully integrating functionally similar cells across time series data of CD14(+ )monocytes at different stages of differentiation into macrophages. Finally, we show that Scanorama is orders of magnitude faster than existing techniques and can integrate a collection of 1,095,538 cells in just similar to 9 h.
引用
收藏
页码:685 / +
页数:10
相关论文
共 59 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/nmeth.4463, 10.1038/NMETH.4463]
[2]  
Allaire J.J., 2017, reticulate: R Interface to Python
[3]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[4]   Automatic panoramic image stitching using invariant features [J].
Brown, Matthew ;
Lowe, David G. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 74 (01) :59-73
[5]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]  
Charikar Moses S., 2002, P 34 ANN ACM S THEOR, P380, DOI [DOI 10.1145/509907.509965, 10.1145/509907.509965]
[8]   From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture [J].
Chen, Xi ;
Teichmann, Sarah A. ;
Meyer, Kerstin B. .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 :29-51
[9]   Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks [J].
Cho, Hyunghoon ;
Berger, Bonnie ;
Peng, Jian .
CELL SYSTEMS, 2018, 7 (02) :185-+
[10]   Efficient Generation of Transcriptomic Profiles by Random Composite Measurements [J].
Cleary, Brian ;
Le Cong ;
Cheung, Anthea ;
Lander, Eric S. ;
Regev, Aviv .
CELL, 2017, 171 (06) :1424-+