A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system

被引:249
作者
Illing, ME
Rajan, RS
Bence, NF
Kopito, RR [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1074/jbc.M204955200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inherited retinal degenerations are typified by retinitis pigmentosa (RP), a heterogeneous group of inherited disorders that causes the destruction of photoreceptor cells, the retinal pigmented epithelium, and choroid. This group of blinding conditions affects over 1.5 million persons worldwide. Approximately 30-40% of human autosomal dominant (AD) RP is caused by dominantly inherited missense mutations in the rhodopsin gene. Here we show that P23H, the most frequent RP mutation in American patients, renders rhodopsin extremely prone to form high molecular weight oligomeric species in the cytoplasm of transfected cells. Aggregated P23H accumulates in aggresomes, which are pericentriolar inclusion bodies that require an intact microtubule cytoskeleton to form. Using fluorescence resonance energy transfer (FRET), we observe that P23H aggregates in the cytoplasm even at extremely low expression levels. Our data show that the P23H mutation destabilizes the protein and targets it for degradation by the ubiquitin proteasome system. P23H is stabilized by proteasome inhibitors and by co-expression of a dominant negative form of ubiquitin. We show that expression of P23H, but not wild-type rhodopsin, results in a generalized impairment of the ubiquitin proteasome system, suggesting a mechanism for photoreceptor degeneration that links RP to a broad class of neurodegenerative diseases.
引用
收藏
页码:34150 / 34160
页数:11
相关论文
共 56 条
[1]   Ubiquitin, cellular inclusions and their role in neurodegeneration [J].
Alves-Rodrigues, A ;
Gregori, L ;
Figueiredo-Pereira, ME .
TRENDS IN NEUROSCIENCES, 1998, 21 (12) :516-520
[2]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[3]   ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions [J].
Bruijn, LI ;
Becher, MW ;
Lee, MK ;
Anderson, KL ;
Jenkins, NA ;
Copeland, NG ;
Sisodia, SS ;
Rothstein, JD ;
Borchelt, DR ;
Price, DL ;
Cleveland, DW .
NEURON, 1997, 18 (02) :327-338
[4]   Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 [J].
Bruijn, LI ;
Houseweart, MK ;
Kato, S ;
Anderson, KL ;
Anderson, SD ;
Ohama, E ;
Reaume, AG ;
Scott, RW ;
Cleveland, DW .
SCIENCE, 1998, 281 (5384) :1851-1854
[5]   Conformational disease [J].
Carrell, RW ;
Lomas, DA .
LANCET, 1997, 350 (9071) :134-138
[6]   APOPTOSIS - FINAL COMMON PATHWAY OF PHOTORECEPTOR DEATH IN RD, RDS, AND RHODOPSIN MUTANT MICE [J].
CHANG, GQ ;
HAO, Y ;
WONG, F .
NEURON, 1993, 11 (04) :595-605
[7]   Unfolding retinal dystrophies: a role for molecular chaperones? [J].
Chapple, JP ;
Grayson, C ;
Hardcastle, AJ ;
Saliba, RS ;
van der Spuy, J ;
Cheetham, ME .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (09) :414-421
[8]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[9]   bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations [J].
Chen, J ;
Flannery, JG ;
LaVail, MM ;
Steinberg, RH ;
Xu, J ;
Simon, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7042-7047
[10]  
Ciechanover A, 2000, BIOESSAYS, V22, P442, DOI 10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO