Protein-sensing assay formats and devices

被引:57
作者
Bilitewski, Ursula [1 ]
机构
[1] Natl Res Ctr Biotechnol, D-38124 Braunschweig, Germany
关键词
protein chips; arrays; phosphorylation; protein activity; immobilization;
D O I
10.1016/j.aca.2005.12.073
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Proteins are used as biocatalysts, therapeutic or diagnostic agents, and as such they are biotechnological. products. Moreover, they are biomarkers for health states, diseases or toxic or other adverse effects, and the intracellular protein network is essential for the adaptation of an organism to its environment. Thus, there is a strong need for analytical methods for protein determination, which allow not only to indicate the presence of a protein, but also its concentration, covalent modification and activity, and corresponding developments of new methods experienced strong support. Among those methods only those were considered here, which are based on affinity reactions between an immobilized capture agent, such as an antibody or a receptor, and the target protein. Immobilization methods range from adsorption on hydrophobic materials, in membranes or gels to covalent binding and bioaffinity reactions, such as the oriented immobilization of antibodies on protein A/G layers. The applicability of the various methods is dependent on physical and chemical properties of the immobilization substrate and of the capture agent, i.e. the presence of surface charges, hydrophobic areas or functional groups for chemical coupling. The choice of the immobilization substrate is influenced by the combination of the assay and detection principle, which meets best the practical requirements. Assay formats range from direct, label-free one-step detection of the affinity reaction between the capture agent and the target protein to multi-step procedures, such as an enzyme-tracer-based sandwich assays. Each approach has its particular advantages and disadvantages with respect to the complexity of the assay, i.e. number of required reagents and of incubation steps, the possible degree of automation, assay time, availability of suitable reagents, required sample volume, sensitivity and specificity, including the possibility to determine several proteins simultaneously. No general recommendation for the "best choice" was given in this contribution, but examples were chosen, which illustrate the potential of the different systems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 247
页数:16
相关论文
共 95 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Optimisation of glass surfaces for optical immunosensors [J].
Akkoyun, A ;
Bilitewski, U .
BIOSENSORS & BIOELECTRONICS, 2002, 17 (08) :655-664
[3]   Electrical biochip technology - a tool for microarrays and continuous monitoring [J].
Albers, J ;
Grunwald, T ;
Nebling, E ;
Piechotta, G ;
Hintsche, R .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 377 (03) :521-527
[4]   Proteome and proteomics: New technologies, new concepts, and new words [J].
Anderson, NL ;
Anderson, NG .
ELECTROPHORESIS, 1998, 19 (11) :1853-1861
[5]   Protein microchips: Use for immunoassay and enzymatic reactions [J].
Arenkov, P ;
Kukhtin, A ;
Gemmell, A ;
Voloshchuk, S ;
Chupeeva, V ;
Mirzabekov, A .
ANALYTICAL BIOCHEMISTRY, 2000, 278 (02) :123-131
[6]   On the response of a label-free interferon-γ immunosensor utilizing electrochemical impedance spectroscopy [J].
Bart, M ;
Stigter, ECA ;
Stapert, HR ;
de Jong, GJ ;
van Bennekom, WP .
BIOSENSORS & BIOELECTRONICS, 2005, 21 (01) :49-59
[7]  
Batenjany M, 2005, NAT METHODS, V2, piv
[8]   Can affinity sensors be used to detect food contaminants? [J].
Bilitewski, U .
ANALYTICAL CHEMISTRY, 2000, 72 (21) :692A-701A
[9]   Biochemical analysis with microfluidic systems [J].
Bilitewski, U ;
Genrich, M ;
Kadow, S ;
Mersal, G .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 377 (03) :556-569
[10]  
Bilitewski Ursula, 1997, P435