Methods for molecular dynamics simulations of protein folding/unfolding in solution

被引:184
作者
Beck, DAC
Daggett, V [1 ]
机构
[1] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
[2] Univ Washington, Biomol Struct & Design Program, Seattle, WA 98195 USA
关键词
protein folding; protein unfolding; molecular dynamics; force field; water model;
D O I
10.1016/j.ymeth.2004.03.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
All atom molecular dynamics simulations have become a standard method for mapping equilibrium protein dynamics and non-equilibrium events like folding and unfolding. Here, we present detailed methods for performing such simulations. Generic protocols for minimization, solvation, simulation, and analysis derived from previous studies are also presented. As a measure of validation, our water model is compared with experiment. An example of current applications of these methods, simulations of the ultrafast folding protein Engrailed Homeodomain are presented including the experimental evidence used to verify their results. Ultrafast folders are an invaluable tool for studying protein behavior as folding and unfolding events measured by experiment occur on timescales accessible with the high-resolution molecular dynamics methods we describe. Finally, to demonstrate the prospect of these methods for folding proteins, a temperature quench simulation of a thermal unfolding intermediate of the Engrailed Homeodomain is described. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]  
Allinger NL, 1996, J COMPUT CHEM, V17, P642, DOI 10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO
[3]  
2-U
[4]  
Alonso DOV, 1998, PROTEIN SCI, V7, P860
[5]   MOLECULAR-DYNAMICS SIMULATIONS OF PROTEIN UNFOLDING AND LIMITED REFOLDING - CHARACTERIZATION OF PARTIALLY UNFOLDED STATES OF UBIQUITIN IN 60-PERCENT METHANOL AND IN WATER [J].
ALONSO, DOV ;
DAGGETT, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :501-520
[6]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[7]   A microscopic view of peptide and protein solvation [J].
Beck, DAC ;
Alonso, DOV ;
Daggett, V .
BIOPHYSICAL CHEMISTRY, 2003, 100 (1-3) :221-237
[8]   The molecular basis for the chemical denaturation of proteins by urea [J].
Bennion, BJ ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5142-5147
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   STRUCTURAL STUDIES OF THE ENGRAILED HOMEODOMAIN [J].
CLARKE, ND ;
KISSINGER, CR ;
DESJARLAIS, J ;
GILLILAND, GL ;
PABO, CO .
PROTEIN SCIENCE, 1994, 3 (10) :1779-1787