Turduckening black holes: An analytical and computational study

被引:120
作者
Brown, David [1 ]
Diener, Peter [2 ,3 ]
Sarbach, Olivier [4 ]
Schnetter, Erik [2 ,3 ]
Tiglio, Manuel [5 ,6 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
[5] Univ Maryland, Dept Phys, Ctr Fundamental Phys, College Pk, MD 20742 USA
[6] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 04期
基金
美国国家科学基金会;
关键词
NUMERICAL RELATIVITY; EVOLUTION-EQUATIONS; BOUNDARY-CONDITIONS; SYSTEMS; 2ND-ORDER;
D O I
10.1103/PhysRevD.79.044023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide a detailed analysis of several aspects of the turduckening technique for evolving black holes. At the analytical level we study the constraint propagation for a family of formulations of Einstein's field equations and identify under what conditions the turducken procedure is rigorously justified and under what conditions constraint violations will propagate to the outside of the black holes. We present high resolution spherically symmetric studies which verify our analytical predictions. Then we present three-dimensional simulations of single distorted black holes using different variations of the turduckening method and also the puncture method. We study the effect that these different methods have on the coordinate conditions, constraint violations, and extracted gravitational waves. We find that the waves agree up to small but nonvanishing differences, caused by escaping superluminal gauge modes. These differences become smaller with increasing detector location.
引用
收藏
页数:19
相关论文
共 47 条
[11]   Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations [J].
Beyer, H ;
Sarbach, O .
PHYSICAL REVIEW D, 2004, 70 (10) :104004-1
[12]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[13]  
BONA C, ARXIVGRQC0410079
[14]   Excision without excision [J].
Brown, David ;
Sarbach, Olivier ;
Schnetter, Erik ;
Tiglio, Manuel ;
Diener, Peter ;
Hawke, Ian ;
Pollney, Denis .
PHYSICAL REVIEW D, 2007, 76 (08)
[15]   Puncture evolution of Schwarzschild black holes [J].
Brown, J. David .
PHYSICAL REVIEW D, 2008, 77 (04)
[16]   BSSN in spherical symmetry [J].
Brown, J. David .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (20)
[17]   Conformal invariance and the conformal-traceless decomposition of the gravitational field [J].
Brown, JD .
PHYSICAL REVIEW D, 2005, 71 (10)
[18]   Well posed constraint-preserving boundary conditions for the linearized Einstein equations [J].
Calabrese, G ;
Pullin, J ;
Reula, O ;
Sarbach, O ;
Tiglio, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) :377-395
[19]   Accurate evolutions of orbiting black-hole binaries without excision [J].
Campanelli, M ;
Lousto, CO ;
Marronetti, P ;
Zlochower, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[20]   Introduction to isolated horizons in numerical relativity [J].
Dreyer, O ;
Krishnan, B ;
Shoemaker, D ;
Schnetter, E .
PHYSICAL REVIEW D, 2003, 67 (02)