Stability of synchronized chaos in coupled dynamical systems

被引:127
作者
Rangarajan, G [1 ]
Ding, MZ
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Theoret Studies, Bangalore 560012, Karnataka, India
[3] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
关键词
D O I
10.1016/S0375-9601(02)00051-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the stability of synchronized chaos in coupled map lattices and in coupled ordinary differential equations. Applying the theory of Hermitian and positive semidefinite matrices we prove two results that give simple bounds on coupling strengths which ensure the stability of synchronized chaos. Previous results in this area involving particular coupling schemes (e.g., global coupling and nearest neighbor diffusive coupling) are included as special cases of the present work. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:204 / 209
页数:6
相关论文
共 31 条
[11]   The stability boundary of synchronized states in globally coupled dynamical systems [J].
Glendinning, P .
PHYSICS LETTERS A, 1999, 259 (02) :129-134
[12]   SYNCHRONIZATION AND COMPUTATION IN A CHAOTIC NEURAL NETWORK [J].
HANSEL, D ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :718-721
[13]   Synchronized chaos in local cortical circuits [J].
Hansel, D .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) :403-415
[14]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885
[15]  
Horn R. A., 1986, Matrix analysis
[16]   Instability and controllability of linearly coupled oscillators: Eigenvalue analysis [J].
Hu, G ;
Yang, JZ ;
Liu, WJ .
PHYSICAL REVIEW E, 1998, 58 (04) :4440-4453
[18]   LYAPUNOV ANALYSIS AND INFORMATION-FLOW IN COUPLED MAP LATTICES [J].
KANEKO, K .
PHYSICA D, 1986, 23 (1-3) :436-447
[19]   DOMAIN GROWTH AND NUCLEATION IN A DISCRETE BISTABLE SYSTEM [J].
OPPO, GL ;
KAPRAL, R .
PHYSICAL REVIEW A, 1987, 36 (12) :5820-5831
[20]   Synchronization of mutually coupled self-mixing modulated lasers [J].
Otsuka, K ;
Kawai, R ;
Hwong, SL ;
Ko, JY ;
Chern, JL .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3049-3052