Robust filtering with guaranteed energy-to-peak performance -: an LMI approach

被引:163
作者
Palhares, RM
Peres, PLD
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Telemat, BR-13081970 Campinas, SP, Brazil
[2] Pontificia Univ Catolica Minas Gerais, Grad Program Elect Engn, BR-30535610 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
robust estimation; filtering problems; filter design; uncertain linear systems; energy-to-peak gain; linear matrix inequalities;
D O I
10.1016/S0005-1098(99)00211-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of robust energy-to-peak filtering for linear systems with convex bounded uncertainties is investigated in this paper. The main purpose is to design a full order stable linear filter that minimizes the worst-case peak value of the filtering error output signal with respect to all bounded energy inputs, in such a way that the filtering error system remains quadratically stable. Necessary and sufficient conditions are formulated in terms of linear Matrix Inequalities - LMIs, for both continuous- and discrete-time cases. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:851 / 858
页数:8
相关论文
共 32 条
[1]  
Abedor J, 1996, INT J ROBUST NONLIN, V6, P899, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO
[2]  
2-G
[4]   SOME OPEN PROBLEMS IN MATRIX-THEORY ARISING IN LINEAR-SYSTEMS AND CONTROL [J].
BERNSTEIN, DS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 :409-432
[5]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[6]  
FIALHO IJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P939
[7]  
Geromel JC, 1998, IEEE DECIS CONTR P, P146, DOI 10.1109/CDC.1998.760606
[8]  
Geromel JC, 1998, IEEE DECIS CONTR P, P632, DOI 10.1109/CDC.1998.760753
[9]   Reduced-order H-infinity and L-2-L-infinity filtering via linear matrix inequalities [J].
Grigoriadis, KM ;
Watson, JT .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (04) :1326-1338
[10]   L-2 and L-2-L-infinity model reduction via linear matrix inequalities [J].
Grigoriadis, KM .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (03) :485-498