The large-scale structure of chromatin corresponding to G- and R-bands in human G(0)/G(1) interphase nuclei was compared. Fluorescence in situ hybridization (FISH) was used to measure the interphase distance between 42 pairs of probes separated by 0.1-1.5 Mbp. The probe pairs were derived from 21q22.2 and Xp21.3, G-band positive regions, and from 4p16.3, 6p21.3, and Xq28, R-band positive regions. Distributions of measured interphase distances in all regions approximated a Rayleigh distribution, suggesting that the chromatin follows a random-walk path over this range. A linear correlation of mean-square interphase distance and genomic separation, also indicative of random-walk folding, was observed in all regions. The slope of the correlation observed using probes from G-band regions was systematically Tower than that from R-band regions. The difference in the slope between Xp21.3 and Xq28 was particularly striking and was observed in normal fibroblast cells, fixed alternatively with methanol and acetic acid or paraformaldehyde, and HeLa cells. These results demonstrate regional differences in large-scale chromosome structure during interphase, with the more openly configured chromatin corresponding to R-bands.