Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer

被引:95
作者
Moriarty, TJ
Marie-Egyptienne, DT
Autexier, C
机构
[1] Sir Mortimer B Davis Jewish Hosp, Lady Davis Inst Med Res, Bloomfield Ctr Res Aging, Montreal, PQ H3T 1E2, Canada
[2] McGill Univ, Dept Anat & Cell Biol, Montreal, PQ, Canada
[3] McGill Univ, Dept Med, Montreal, PQ, Canada
基金
加拿大健康研究院;
关键词
D O I
10.1128/MCB.24.9.3720-3733.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human telomerase is a multimer containing two human telomerase RNAs (hTRs) and most likely two human telomerase reverse transcriptases (hTERTs). Telomerase synthesizes multiple telomeric repeats using a unique repeat addition form of processivity. We investigated hTR and hTERT sequences that were essential for DNA synthesis and processivity using a direct primer extension telomerase assay. We found that hTERT consists of two physically separable functional domains, a polymerase domain containing RNA interaction domain 2 (RID2), reverse transcriptase (RT), and C-terminal sequences, and a major accessory domain, RNA interaction domain 1 (RID1). RID2 mutants defective in high-affinity hTR interactions and an RT catalytic mutant exhibited comparable DNA synthesis defects. The RID2-interacting hTR P6.1 helix was also essential for DNA synthesis. RID1 interacted with the hTR pseudoknot-template domain and hTERT's RT motifs and putative thumb and was essential for processivity, but not DNA synthesis. The hTR pseudoknot was essential for processivity, but not DNA synthesis, and processivity was reduced or abolished in dimerization-defective pseudoknot mutants. trans-acting hTERTs and hTRs complemented the processivity defects of RID1 and pseudoknot mutants, respectively. These data provide novel insight into the catalytic organization of the human telomerase complex and suggest that repeat addition processivity is one of the major catalytic properties conferred by telomerase multimerization.
引用
收藏
页码:3720 / 3733
页数:14
相关论文
共 57 条
[11]   INVIVO EXPRESSION OF THE LACY GENE IN 2 SEGMENTS LEADS TO FUNCTIONAL LAC PERMEASE [J].
BIBI, E ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (11) :4325-4329
[12]   Yeast telomerase is capable of limited repeat addition processivity [J].
Bosoy, D ;
Lue, NF .
NUCLEIC ACIDS RESEARCH, 2004, 32 (01) :93-101
[13]   A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24199-24207
[14]   Tetrahymena telomerase is active as a monomer [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (12) :4794-4804
[15]   Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR CELL, 2000, 6 (02) :493-499
[16]   Mutations in HIV reverse transcriptase which alter RNase H activity and decrease strand transfer efficiency are suppressed by HIV nucleocapsid protein [J].
Cameron, CE ;
Ghosh, M ;
LeGrice, SFJ ;
Benkovic, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (13) :6700-6705
[17]   Template boundary definition in mammalian telomerase [J].
Chen, JL ;
Greider, CW .
GENES & DEVELOPMENT, 2003, 17 (22) :2747-2752
[18]   Secondary structure of vertebrate telomerase RNA [J].
Chen, JL ;
Blasco, MA ;
Greider, CW .
CELL, 2000, 100 (05) :503-514
[19]   Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility [J].
Chen, JL ;
Greider, CW .
EMBO JOURNAL, 2003, 22 (02) :304-314
[20]   A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA [J].
Chen, JL ;
Opperman, KK ;
Greider, CW .
NUCLEIC ACIDS RESEARCH, 2002, 30 (02) :592-597