Tetrahymena telomerase is active as a monomer

被引:45
作者
Bryan, TM [1 ]
Goodrich, KJ
Cech, TR
机构
[1] Childrens Med Res Inst, Westmead, NSW 2145, Australia
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1091/mbc.E03-07-0474
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Telomerase is an enzyme that utilizes an internal RNA molecule as a template for the extension of chromosomal DNA ends. The catalytic core of telomerase consists of the RNA subunit and a protein reverse transcriptase subunit, known as telomerase reverse transcriptase (TERT). It has previously been shown that both yeast and human telomerase can form dimers or multimers in which one RNA in the complex can influence the activity of another. To test the proposal that dimerization might be essential for telomerase activity, we sought to determine whether Tetrahymena thermophila telomerase is active as a dimer or a monomer. Recombinant Tetrahymena telomerase eluted from a gel filtration column at the size of a monomeric complex (one RNA plus one TERT), and those fractions showed processive telomerase activity. We were unable to detect dimerization of Tetrahymena telomerase by coprecipitation experiments, by using tags on either the TERT protein or telomerase RNA. Therefore, a majority, if not all, of the recombinant Tetrahymena telomerase in our reconstitution system is present as a monomeric complex. We were also unable to detect dimerization of native telomerase from mating and vegetative Tetrahymena cell extracts. These results demonstrate that Tetrahymena telomerase does not need to dimerize to be active and processive.
引用
收藏
页码:4794 / 4804
页数:11
相关论文
共 39 条
[1]   The Euplotes La motif protein p43 has properties of a telomerase-specific subunit [J].
Aigner, S ;
Postberg, J ;
Lipps, HJ ;
Cech, TR .
BIOCHEMISTRY, 2003, 42 (19) :5736-5747
[2]   Two independent regions of human telomerase reverse transcriptase are important for its oligomerization and telomerase activity [J].
Arai, K ;
Masutomi, K ;
Khurts, S ;
Kaneko, S ;
Kobayashi, K ;
Murakami, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :8538-8544
[3]   N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo [J].
Armbruster, BN ;
Banik, SSR ;
Guo, CH ;
Smith, AC ;
Counter, CM .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (22) :7775-7786
[4]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[5]   Functional multimerization of the human telomerase reverse transcriptase [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (18) :6151-6160
[6]   A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24199-24207
[7]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[8]   Telomerase and the maintenance of chromosome ends [J].
Bryan, TM ;
Cech, TR .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :318-324
[9]   Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax [J].
Bryan, TM ;
Sperger, JM ;
Chapman, KB ;
Cech, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8479-8484
[10]   Secondary structure of vertebrate telomerase RNA [J].
Chen, JL ;
Blasco, MA ;
Greider, CW .
CELL, 2000, 100 (05) :503-514