phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity

被引:168
作者
Casson, Stuart A. [1 ]
Franklin, Keara A. [2 ]
Gray, Julie E. [3 ]
Grierson, Claire S. [1 ]
Whitelam, Garry C. [2 ]
Hetherington, Alistair M. [1 ]
机构
[1] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England
[2] Univ Leicester, Dept Biol, Leicester LE1 7RH, Leics, England
[3] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
TRANSCRIPTION FACTOR; RED-LIGHT; INTERACTING FACTOR-3; ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION; SHADE-AVOIDANCE; PLANTS; DIFFERENTIATION; DEGRADATION; LEAVES;
D O I
10.1016/j.cub.2008.12.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stomata are pores on the surfaces of leaves that regulate gas exchange between the plant interior and the atmosphere [1]. Plants adapt to changing environmental conditions in the short term by adjusting the aperture of the stomatal pores, whereas longer-term changes are accomplished by altering the proportion of stomata that develop on the leaf surface [2, 3]. Although recent work has identified genes involved in the control of stomatal development [4], we know very little about how stomatal development is modulated by environmental signals, such as light. Here, we show that mature leaves of Arabidopsis grown at higher photon irradiances show significant increases in stomatal index (S.I.) [5] compared to those grown at lower photon irradiances. Light quantity-mediated changes in S.I. occur in red light, suggesting that phytochrome photoreceptors [6] are involved. By using a genetic approach, we demonstrate that this response is dominated by phytochrome B and also identify a role for the transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) M. In sum, we identify a photoreceptor and downstream signaling protein involved in light-mediated control of stomatal development, thereby establishing a tractable system for investigating how an environmental signal modulates stomatal development.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 43 条
[1]   Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasorne-mediated degradation [J].
Al-Sady, Bassem ;
Ni, Weimin ;
Kircher, Stefan ;
Schaefer, Eberhard ;
Quail, Peter H. .
MOLECULAR CELL, 2006, 23 (03) :439-446
[2]   Mechanistic duality of transcription factor function in phytochrome signaling [J].
Al-Sady, Bassern ;
Kikis, Elise A. ;
Monte, Elena ;
Quail, Peter H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (06) :2232-2237
[3]   A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing [J].
Aukerman, MJ ;
Hirschfeld, M ;
Wester, L ;
Weaver, M ;
Clack, T ;
Amasino, RM ;
Sharrock, RA .
PLANT CELL, 1997, 9 (08) :1317-1326
[4]   Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis [J].
Bauer, D ;
Viczián, A ;
Kircher, S ;
Nobis, T ;
Nitschke, R ;
Kunkel, T ;
Panigrahi, KCS ;
Adám, É ;
Fejes, E ;
Schäfer, E ;
Nagy, F .
PLANT CELL, 2004, 16 (06) :1433-1445
[5]  
Berger D, 2000, GENE DEV, V14, P1119
[6]   Stomatal development and pattern controlled by a MAPKK kinase [J].
Bergmann, DC ;
Lukowitz, W ;
Somerville, CR .
SCIENCE, 2004, 304 (5676) :1494-1497
[7]   Stomatal development [J].
Bergmann, Dominique C. ;
Sack, Fred D. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2007, 58 :163-181
[8]   Growth stage-based phenotypic analysis of arabidopsis:: A model for high throughput functional genomics in plants [J].
Boyes, DC ;
Zayed, AM ;
Ascenzi, R ;
McCaskill, AJ ;
Hoffman, NE ;
Davis, KR ;
Görlach, J .
PLANT CELL, 2001, 13 (07) :1499-1510
[9]   Influence of environmental factors on stomatal development [J].
Casson, Stuart ;
Gray, Julie E. .
NEW PHYTOLOGIST, 2008, 178 (01) :9-23
[10]   Light signal transduction in higher plants [J].
Chen, M ;
Chory, J ;
Fankhauser, C .
ANNUAL REVIEW OF GENETICS, 2004, 38 :87-117