Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys

被引:140
作者
Fan, G. J. [1 ]
Fu, L. F.
Choo, H.
Liaw, P. K.
Browning, N. D.
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[3] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA
[4] Natl Ctr Electron Microscopy, Lawerence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
nanocrystalline alloys; mechanical properties; grain growth; deformation mechanisms;
D O I
10.1016/j.actamat.2006.06.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The uniaxial tensile behavior of as-deposited bulk nanocrystalline (nc) Ni-Fe (average grain size d approximate to 23 nm) and Co-P (d approximate to 12 nm) alloys was investigated. Both alloys have a high strength of about 2 GPa. The nc Ni-Fe alloy exhibits a tensile elongation to failure, epsilon(f), in the ran e 4-7%. depending on the applied strain rate, L In contrast, the nc Co-P alloy shows rather constant epsilon(f) of about 2.2%, which is insensitive to epsilon Tensile plastic deformation causes a grain growth in both alloys. An abnormal grain growth was noticed in the nc Ni-Fe alloy, leading to a bimodal microstructure with large grain sizes up to about 250 nm. While deformation twinning and dislocation motion still play roles, our experimental results indicate that the plastic deformation of the nc alloys is influenced by the grain boundary activities. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4781 / 4792
页数:12
相关论文
共 70 条
[61]   Temperature and strain rate effects on the strength and ductility of nanostructured copper [J].
Wang, YM ;
Ma, E .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3165-3167
[62]   High tensile ductility in a nanostructured metal [J].
Wang, YM ;
Chen, MW ;
Zhou, FH ;
Ma, E .
NATURE, 2002, 419 (6910) :912-915
[63]   Structure and mechanical behavior of bulk nanocrystalline materials [J].
Weertman, JR ;
Farkas, D ;
Hemker, K ;
Kung, H ;
Mayo, M ;
Mitra, R ;
Van Swygenhoven, H .
MRS BULLETIN, 1999, 24 (02) :44-50
[64]   Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J].
Wei, Q ;
Kecskes, L ;
Jiao, T ;
Hartwig, KT ;
Ramesh, KT ;
Ma, E .
ACTA MATERIALIA, 2004, 52 (07) :1859-1869
[65]   Deformation twinning in nanocrystalline Al by molecular dynamics simulation [J].
Yamakov, V ;
Wolf, D ;
Phillpot, SR ;
Gleiter, H .
ACTA MATERIALIA, 2002, 50 (20) :5005-5020
[66]   Ultrahigh strength and high ductility of bulk nanocrystalline copper [J].
Youssef, KM ;
Scattergood, RO ;
Murty, KL ;
Horton, JA ;
Koch, CC .
APPLIED PHYSICS LETTERS, 2005, 87 (09)
[67]   Ultratough nanocrystalline copper with a narrow grain size distribution [J].
Youssef, KM ;
Scattergood, RO ;
Murty, KL ;
Koch, CC .
APPLIED PHYSICS LETTERS, 2004, 85 (06) :929-931
[68]   The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper [J].
Zhang, K ;
Weertman, JR ;
Eastman, JA .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5197-5199
[69]   Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures [J].
Zhang, K ;
Weertman, JR ;
Eastman, JA .
APPLIED PHYSICS LETTERS, 2005, 87 (06)
[70]   Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals [J].
Zhu, B ;
Asaro, RJ ;
Krysl, P ;
Bailey, R .
ACTA MATERIALIA, 2005, 53 (18) :4825-4838