Generalized Thresholding of Large Covariance Matrices

被引:328
作者
Rothman, Adam J. [1 ]
Levina, Elizaveta [1 ]
Zhu, Ji [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Covariance; High-dimensional data; Regularization; Thresholding; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; PRINCIPAL COMPONENTS; WAVELET SHRINKAGE; ORACLE PROPERTIES; SELECTION; LASSO; REGULARIZATION;
D O I
10.1198/jasa.2009.0101
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new class of generalized thresholding operators that combine thresholding with shrinkage, and Study generalized thresholding of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and carries almost no computational burden. We obtain in explicit convergence rate in the operator norm that shows the tradeoff between the sparsity of the true model, dimension, and the sample size, and shows that generalized thresholding is consistent over a large class of models as long as the dimension p and the sample size it satisfy log p/n -> 0. In addition, we show that generalized thresholding has the "sparsistency" property, meaning it estimates true zeros a, zeros with probability tending to 1, and, under an additional mild condition, is sign consistent for nonzero elements. We show that generalized thresholding covers, as special cases, hard and soft thresholding, smoothly clipped absolute deviation, and adaptive lasso, and compare different types of generalized thresholding in a simulation study and in an example of gene clustering from a microarray experiment with tumor tissues.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 30 条