Critical behaviour of the random-anisotropy model in the strong-anisotropy limit

被引:16
作者
Toldin, Francesco Parisen
Pelissetto, Andrea
Vicari, Ettore
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[4] Univ Pisa, Dipartimento Fis, Pisa, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2006年
关键词
classical Monte Carlo simulations; classical phase transitions (theory); finite-size scaling; spin glasses (theory);
D O I
10.1088/1742-5468/2006/06/P06002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the nature of the critical behaviour of the random-anisotropy Heisenberg model (RAM), which describes magnetic systems with random uniaxial single-site anisotropy, such as some amorphous alloys of rare earths and transition metals. In particular, we consider the strong-anisotropy limit (SRAM), in which the Hamiltonian can be rewritten as the one of an Ising spin-glass model with correlated bond disorder. We perform Monte Carlo simulations of the SRAM on simple cubic lattices of linear size L, up to L = 30, measuring correlation functions of the replica-replica overlap, which is the order parameter at a glass transition. The corresponding results show critical behaviour and finite-size scaling. They provide evidence of a finite-temperature continuous transition with critical exponents. eta(o) = -0.24(4) and nu(o) = 2.4(6). These results are close to the corresponding estimates that have been obtained in the usual Ising spin-glass model with uncorrelated bond disorder, suggesting that the two models belong to the same universality class. We also determine the leading correction-to-scaling exponent, finding omega = 1.0(4).
引用
收藏
页数:22
相关论文
共 57 条
[1]   NON-LINEAR SCALING FIELDS AND CORRECTIONS TO SCALING NEAR CRITICALITY [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW B, 1983, 27 (07) :4394-4400
[2]  
AHARONY A, 1980, PHYS REV LETT, V45, P1583, DOI 10.1103/PhysRevLett.45.1583
[3]  
AHARONY A, 1975, PHYS REV B, V12, P1038, DOI 10.1103/PhysRevB.12.1038
[4]   LOW-TEMPERATURE SCALING FOR SYSTEMS WITH RANDOM-FIELDS AND ANISOTROPIES [J].
AHARONY, A ;
PYTTE, E .
PHYSICAL REVIEW B, 1983, 27 (09) :5872-5874
[5]   EVIDENCE FOR SPIN-GLASS BEHAVIOR IN THE RANDOM ANISOTROPY AXIS MODEL [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (06) :L139-L143
[6]   Spin models with random anisotropy and reflection Symmetry [J].
Calabrese, Pasquale ;
Pelissetto, Andrea ;
Vicari, Ettore .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2) :036104-1
[7]   Three-dimensional randomly dilute Ising model:: Monte Carlo results -: art. no. 036136 [J].
Calabrese, P ;
Martín-Mayor, V ;
Pelissetto, A ;
Vicari, E .
PHYSICAL REVIEW E, 2003, 68 (03) :17
[8]   Non-analyticity of the Callan-Symanzik β-function of two-dimensional O(N) models [J].
Calabrese, P ;
Caselle, M ;
Celi, A ;
Pelissetto, A ;
Vicari, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (46) :8155-8170
[9]   Critical exponents and equation of state of the three-dimensional Heisenberg universality class [J].
Campostrini, M ;
Hasenbusch, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 2002, 65 (14) :1-21
[10]  
CAMPOSTRINI M, 2006, CONDMAT0605083