Pseudocapacitive oxide materials for high-rate electrochemical energy storage

被引:4574
作者
Augustyn, Veronica [1 ]
Simon, Patrice [2 ,3 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, France
基金
欧洲研究理事会;
关键词
HYDROGEN TITANATE NANOWIRES; VANADIUM-OXIDE; CHARGE-STORAGE; ION INTERCALATION; RUTHENIUM OXIDE; ELECTRODE MATERIAL; LITHIUM INSERTION; CARBON NANOTUBES; NI-FOAM; SUPERCAPACITOR;
D O I
10.1039/c3ee44164d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge-discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.
引用
收藏
页码:1597 / 1614
页数:18
相关论文
共 131 条
[1]   Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide [J].
Amatucci, GG ;
Badway, F ;
Singhal, A ;
Beaudoin, B ;
Skandan, G ;
Bowmer, T ;
Plitza, I ;
Pereira, N ;
Chapman, T ;
Jaworski, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A940-A950
[2]   Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors [J].
An, Guimin ;
Yu, Ping ;
Xiao, Meijun ;
Liu, Zhimin ;
Miao, Zhenjiang ;
Ding, Kunlun ;
Mao, Lanqun .
NANOTECHNOLOGY, 2008, 19 (27)
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[5]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[6]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[7]   Lithium-ion storage properties of titanium oxide nanosheets [J].
Augustyn, Veronica ;
White, Edward R. ;
Ko, Jesse ;
Gruener, George ;
Regan, Brian C. ;
Dunn, Bruce .
MATERIALS HORIZONS, 2014, 1 (02) :219-223
[8]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[9]   Low-potential lithium-ion reactivity of vanadium oxide aerogels [J].
Augustyn, Veronica ;
Dunn, Bruce .
ELECTROCHIMICA ACTA, 2013, 88 :530-535
[10]   NOTE ON A METHOD TO INTERRELATE INNER AND OUTER ELECTRODE AREAS - REPLY [J].
BARONETTO, D ;
KRSTAJIC, N ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1994, 39 (16) :2359-2362