Pseudocapacitive oxide materials for high-rate electrochemical energy storage

被引:4574
作者
Augustyn, Veronica [1 ]
Simon, Patrice [2 ,3 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, France
基金
欧洲研究理事会;
关键词
HYDROGEN TITANATE NANOWIRES; VANADIUM-OXIDE; CHARGE-STORAGE; ION INTERCALATION; RUTHENIUM OXIDE; ELECTRODE MATERIAL; LITHIUM INSERTION; CARBON NANOTUBES; NI-FOAM; SUPERCAPACITOR;
D O I
10.1039/c3ee44164d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge-discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.
引用
收藏
页码:1597 / 1614
页数:18
相关论文
共 131 条
[21]   Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage [J].
Chen, Jun Song ;
Liu, Hao ;
Qiao, Shi Zhang ;
Lou, Xiong Wen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (15) :5687-5692
[22]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[23]   High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Wen, Jing ;
Zhang, Yuewei ;
Shen, Meiqing ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2011, 23 (06) :791-+
[24]   Layered vanadium and molybdenum oxides: batteries and electrochromics [J].
Chernova, Natasha A. ;
Roppolo, Megan ;
Dillon, Anne C. ;
Whittingham, M. Stanley .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2526-2552
[25]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[26]   Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries [J].
Choi, Zungsun ;
Kramer, Dominik ;
Moenig, Reiner .
JOURNAL OF POWER SOURCES, 2013, 240 :245-251
[27]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[28]   Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging [J].
Cohen, YS ;
Aurbach, D .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (06) :536-542
[29]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[30]   2-DIMENSIONAL AND QUASI-2-DIMENSIONAL ISOTHERMS FOR LI INTERCALATION AND UPD PROCESSES AT SURFACES [J].
CONWAY, BE .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1249-1258