Pseudocapacitive oxide materials for high-rate electrochemical energy storage
被引:4574
作者:
Augustyn, Veronica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
Augustyn, Veronica
[1
]
Simon, Patrice
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, FranceUniv Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
Simon, Patrice
[2
,3
]
Dunn, Bruce
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
Dunn, Bruce
[1
]
机构:
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, France
Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge-discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.