The Theory of Multidimensional Persistence

被引:185
作者
Carlsson, Gunnar [2 ]
Zomorodian, Afra [1 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Computational topology; Multidimensional analysis; Persistent homology; Persistence; ARRANGEMENTS;
D O I
10.1007/s00454-009-9176-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Persistent homology captures the topology of a filtration-a one-parameter family of increasing spaces-in terms of a complete discrete invariant. This invariant is a multiset of intervals that denote the lifetimes of the topological entities within the filtration. In many applications of topology, we need to study a multifiltration: a family of spaces parameterized along multiple geometric dimensions. In this paper, we show that no similar complete discrete invariant exists for multidimensional persistence. Instead, we propose the rank invariant, a discrete invariant for the robust estimation of Betti numbers in a multifiltration, and prove its completeness in one dimension.
引用
收藏
页码:71 / 93
页数:23
相关论文
共 21 条
[1]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[2]  
Carlsson G., 2005, International Journal of Shape Modeling, V11, P149, DOI [DOI 10.1145/1057432.1057449, 10.1142/S0218654305000761, DOI 10.1142/S0218654305000761]
[3]   On the local behavior of spaces of natural images [J].
Carlsson, Gunnar ;
Ishkhanov, Tigran ;
de Silva, Vin ;
Zornorodian, Afra .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 76 (01) :1-12
[4]  
CHAZAL F., 2005, P 21 ANN S COMP GEOM, P255
[5]   Gauss-Manin connections for arrangements, I eigenvalues [J].
Cohen, DC ;
Orlik, P .
COMPOSITIO MATHEMATICA, 2003, 136 (03) :299-316
[6]   A barcode shape descriptor for curve point cloud data [J].
Collins, A ;
Zomorodian, A ;
Carlsson, G ;
Guibas, LJ .
COMPUTERS & GRAPHICS-UK, 2004, 28 (06) :881-894
[7]  
De Silva V., 2004, P 1 EUR C POINT BAS, P157, DOI [10.2312/SPBG/SPBG04/157-166, DOI 10.2312/SPBG/SPBG04/157-166]
[8]  
DESILVA V, 2005, P ROB SCI SYST
[9]   Topological persistence and simplification [J].
Edelsbrunner, H ;
Letscher, D ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) :511-533
[10]   Size homotopy groups for computation of natural size distances [J].
Frosini, P ;
Mulazzani, M .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1999, 6 (03) :455-464