Metabolite of SIR2 reaction modulates TRPM2 ion channel

被引:123
作者
Grubisha, Olivera
Rafty, Louise A.
Takanishi, Christina L.
Xu, Xiaojie
Tong, Lei
Perraud, Anne-Laure
Scharenberg, Andrew M.
Denu, John M.
机构
[1] Univ Wisconsin, Sch Med, Dept Biomol Chem, Madison, WI 53706 USA
[2] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97239 USA
[3] Univ Washington, Dept Pediat & Immunol, Seattle, WA 98195 USA
[4] Childrens Hosp & Med Ctr, Seattle, WA 98195 USA
关键词
D O I
10.1074/jbc.M513741200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transient receptor potential melastatin-related channel 2 (TRPM2) is a nonselective cation channel, whose prolonged activation by oxidative and nitrative agents leads to cell death. Here, we show that the drug puromycin selectively targets TRPM2-expressing cells, leading to cell death. Our data suggest that the silent information regulator 2 (Sir2 or sirtuin) family of enzymes mediates this susceptibility to cell death. Sirtuins are protein deacetylases that regulate gene expression, apoptosis, metabolism, and aging. These NAD(+)- dependent enzymes catalyze a reaction in which the acetyl group from substrate is transferred to the ADP-ribose portion of NAD(+) to form deacetylated product, nicotinamide, and the metabolite OAADPr, whose functions remain elusive. Using cell-based assays and RNA interference, we show that puromycin-induced cell death is greatly diminished by nicotinamide ( a potent sirtuin inhibitor), and by decreased expression of sirtuins SIRT2 and SIRT3. Furthermore, we demonstrate using channel current recordings and binding assays that OAADPr directly binds to the cytoplasmic domain of TRPM2 and activates the TRPM2 channel. ADP-ribose binds TRPM2 with similarly affinity, whereas NAD(+) displays almost negligible binding. These studies provide the first evidence for the potential role of sirtuin-generated OAADPr in TRPM2 channel gating.
引用
收藏
页码:14057 / 14065
页数:9
相关论文
共 61 条
[1]   A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages [J].
Bellizzi, D ;
Rose, G ;
Cavalcante, P ;
Covello, G ;
Dato, S ;
De Rango, F ;
Greco, V ;
Maggiolini, M ;
Feraco, E ;
Mari, V ;
Franceschi, C ;
Passarino, G ;
De Benedictis, G .
GENOMICS, 2005, 85 (02) :258-263
[2]   The new life of a centenarian:: signalling functions of NAD(P) [J].
Berger, F ;
Ramírez-Hernández, MH ;
Ziegler, M .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (03) :111-118
[3]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[4]   Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases [J].
Borra, MT ;
O'Neill, FJ ;
Jackson, MD ;
Marshall, B ;
Verdin, E ;
Foltz, KR ;
Denu, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :12632-12641
[5]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[6]   Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J].
Cohen, HY ;
Miller, C ;
Bitterman, KJ ;
Wall, NR ;
Hekking, B ;
Kessler, B ;
Howitz, KT ;
Gorospe, M ;
de Cabo, R ;
Sinclair, DA .
SCIENCE, 2004, 305 (5682) :390-392
[7]   Linking chromatin function with metabolic networks:: Sir2 family of NAD+-dependent deacetylases [J].
Denu, JM .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) :41-48
[8]  
Diefenbach J, 2005, CELL MOL LIFE SCI, V62, P721, DOI 10.1007/s00018-004-4503-3
[9]   Integrated effects of multiple modulators on human liver glycogen phosphorylase a [J].
Ercan-Fang, N ;
Gannon, MC ;
Rath, VL ;
Treadway, JL ;
Taylor, MR ;
Nuttall, FQ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 283 (01) :E29-E37
[10]   TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase [J].
Fonfria, E ;
Marshall, ICB ;
Benham, CD ;
Boyfield, I ;
Brown, JD ;
Hill, K ;
Hughes, JP ;
Skaper, SD ;
McNulty, S .
BRITISH JOURNAL OF PHARMACOLOGY, 2004, 143 (01) :186-192