A tutorial on support vector regression

被引:8503
作者
Smola, AJ [1 ]
Schölkopf, B
机构
[1] Australian Natl Univ, RSISE, Canberra, ACT 0200, Australia
[2] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
关键词
machine learning; support vector machines; regression estimation;
D O I
10.1023/B:STCO.0000035301.49549.88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 139 条
[101]   Estimating the support of a high-dimensional distribution [J].
Schölkopf, B ;
Platt, JC ;
Shawe-Taylor, J ;
Smola, AJ ;
Williamson, RC .
NEURAL COMPUTATION, 2001, 13 (07) :1443-1471
[102]   Comparing support vector machines with Gaussian kernels to radial basis function classifiers [J].
Scholkopf, B ;
Sung, KK ;
Burges, CJC ;
Girosi, F ;
Niyogi, P ;
Poggio, T ;
Vapnik, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) :2758-2765
[103]   New support vector algorithms [J].
Schölkopf, B ;
Smola, AJ ;
Williamson, RC ;
Bartlett, PL .
NEURAL COMPUTATION, 2000, 12 (05) :1207-1245
[104]  
SCHOLKOPF B, 2001, IN PRESS P ANN C LEA
[105]  
SCHOLKOPF B, 1996, LECT NOTES COMPUT SC, V1112, P47
[106]  
Scholkopf B., 1995, KDD
[107]  
SCHOLKOPF B, 1999, ADV KERNEL METHOD SU
[108]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[109]   Structural risk minimization over data-dependent hierarchies [J].
Shawe-Taylor, J ;
Bartlett, PL ;
Williamson, RC ;
Anthony, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :1926-1940
[110]  
SMOLA A, 1999, C PUBLICATIONS, V470, P575