A tutorial on support vector regression

被引:8503
作者
Smola, AJ [1 ]
Schölkopf, B
机构
[1] Australian Natl Univ, RSISE, Canberra, ACT 0200, Australia
[2] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
关键词
machine learning; support vector machines; regression estimation;
D O I
10.1023/B:STCO.0000035301.49549.88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 139 条
[61]  
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
[62]  
Karush W., 1939, THESIS U CHICAGO
[63]  
Kaufman L, 1999, ADVANCES IN KERNEL METHODS, P147
[64]  
KEERTHI S, 1999, CD9914 NATL U SING D
[65]   Improvements to Platt's SMO algorithm for SVM classifier design [J].
Keerthi, SS ;
Shevade, SK ;
Bhattacharyya, C ;
Murthy, KRK .
NEURAL COMPUTATION, 2001, 13 (03) :637-649
[66]   A CORRESPONDENCE BETWEEN BAYESIAN ESTIMATION ON STOCHASTIC PROCESSES AND SMOOTHING BY SPLINES [J].
KIMELDOR.GS ;
WAHBA, G .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02) :495-&
[67]   SOME RESULTS ON TCHEBYCHEFFIAN SPLINE FUNCTIONS [J].
KIMELDORF, G ;
WAHBA, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 33 (01) :82-+
[68]  
Kowalczyk A, 2000, ADV NEUR IN, P75
[69]  
Kuhn H., 1951, P 2 BERK S MATH STAT, P481, DOI DOI 10.1007/BF01582292
[70]   SSVM: A smooth support vector machine for classification [J].
Lee, YJ ;
Mangasarian, OL .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 20 (01) :5-22