A locally adaptive statistical procedure (LAP) to identify differentially expressed chromosomal regions

被引:29
作者
Callegaro, A. [1 ]
Basso, D. [1 ]
Bicciato, S. [1 ]
机构
[1] Univ Padua, Dept Chem Proc Engn, I-35131 Padua, Italy
关键词
D O I
10.1093/bioinformatics/btl455
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The systematic integration of expression profiles and other types of gene information, such as chromosomal localization, ontological annotations and sequence characteristics, still represents a challenge in the gene expression arena. In particular, the analysis of transcriptional data in context of the physical location of genes in a genome appears promising in detecting chromosomal regions with transcriptional imbalances often characterizing cancer. Results: A computational tool named locally adaptive statistical procedure (LAP), which incorporates transcriptional data and structural information for the identification of differentially expressed chromosomal regions, is described. LAP accounts for variations in the distance between genes and in gene density by smoothing standard statistics on gene position before testing the significance of their differential levels of gene expression. The procedure smoothes parameters and computes p-values locally to account for the complex structure of the genome and to more precisely estimate the differential expression of chromosomal regions. The application of LAP to three independent sets of raw expression data allowed identifying differentially expressed regions that are directly involved in known chromosomal aberrations characteristic of tumors.
引用
收藏
页码:2658 / 2666
页数:9
相关论文
共 30 条
[1]   The human transcriptome map:: Clustering of highly expressed genes in chromosomal domains [J].
Caron, H ;
van Schaik, B ;
van der Mee, M ;
Baas, F ;
Riggins, G ;
van Sluis, P ;
Hermus, MC ;
van Asperen, R ;
Boon, K ;
Voûte, PA ;
Heisterkamp, S ;
van Kampen, A ;
Versteeg, R .
SCIENCE, 2001, 291 (5507) :1289-+
[2]  
CIFOLA I, 2006, UNPUB BMC GENOMICS
[3]  
Crawley JJ, 2002, GENOME BIOL, V3
[4]   Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis [J].
Cromer, A ;
Carles, A ;
Millon, R ;
Ganguli, G ;
Chalmel, F ;
Lemaire, F ;
Young, J ;
Dembélé, D ;
Thibault, C ;
Muller, D ;
Poch, O ;
Abecassis, J ;
Wasylyk, B .
ONCOGENE, 2004, 23 (14) :2484-2498
[5]   Robust classification of renal cell carcinoma based on gene expression data and predicted cytogenetic profiles [J].
Furge, KA ;
Lucas, KA ;
Takahashi, M ;
Sugimura, J ;
Kort, EJ ;
Kanayama, H ;
Kagawa, S ;
Hoekstra, P ;
Curry, J ;
Yang, XMJ ;
Teh, BT .
CANCER RESEARCH, 2004, 64 (12) :4117-4121
[6]   Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer:: implications for the interpretation of genomic implications [J].
Heidenblad, M ;
Lindgren, D ;
Veltman, JA ;
Jonson, T ;
Mahlamäki, EH ;
Gorunova, L ;
van Kessel, AG ;
Schoenmakers, EFPM ;
Höglund, M .
ONCOGENE, 2005, 24 (10) :1794-1801
[7]   Local bandwidth choice in kernel regression estimation [J].
Herrmann, E .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (01) :35-54
[8]   Combining DNA expression with positional information to detect functional silencing of chromosomal regions [J].
Hüsing, J ;
Zeschnigk, M ;
Boes, T ;
Jöckel, KH .
BIOINFORMATICS, 2003, 19 (18) :2335-2342
[9]  
Hyman E, 2002, CANCER RES, V62, P6240
[10]   Two types of chromosome 1p losses with opposite significance in gliomas [J].
Idbaih, A ;
Marie, Y ;
Pierron, G ;
Brennetot, C ;
Khê, HX ;
Kujas, M ;
Mokhtari, K ;
Sanson, M ;
Lejeune, J ;
Aurias, A ;
Delattre, O ;
Delattre, JY .
ANNALS OF NEUROLOGY, 2005, 58 (03) :483-487