The predictability problem in systems with an uncertainty in the evolution law

被引:16
作者
Boffetta, G
Celani, A
Cencini, M
Lacorata, G
Vulpiani, A
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] Univ Turin, Ist Nazl Fis Mat, CNR, Ist Cosmogeofis, I-10133 Turin, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[4] Ist Nazl Fis Mat, Unita Roma 1, Rome, Italy
[5] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Laquila, Italy
[6] CNR, Ist Fis Atmosfera, I-00133 Rome, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 07期
关键词
D O I
10.1088/0305-4470/33/7/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of unpredictability in a physical system due to the incomplete knowledge of the evolution laws is addressed. Major interest is devoted to the analysis of error amplification in chaotic systems with many characteristic times and scales when the fastest scales are not resolved. The parametrization of the unresolved scales introduces a non-infinitesimal uncertainty (with respect to the true evolution laws) which affects the forecasting ability on the large resolved scales. The evolution of non-infinitesimal errors from the unresolved scales up to the large scales is analysed by means of the finite-size Lyapunov exponent. It is shown that proper parametrization of the unresolved scales allows one to recover the maximal predictability of the system.
引用
收藏
页码:1313 / 1324
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1996, Proc. seminar on predictability, DOI DOI 10.1017/CBO9780511617652.004
[2]   Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient [J].
Artale, V ;
Boffetta, G ;
Celani, A ;
Cencini, M ;
Vulpiani, A .
PHYSICS OF FLUIDS, 1997, 9 (11) :3162-3171
[3]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[4]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[5]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[6]   CHARACTERIZATION OF INTERMITTENCY IN CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12) :2157-2165
[7]   Intermittency and eddy viscosities in dynamical models of turbulence [J].
Benzi, R ;
Biferale, L ;
Succi, S ;
Toschi, F .
PHYSICS OF FLUIDS, 1999, 11 (05) :1221-1228
[8]   AN OBSERVATION ON PROBABILITY DENSITY EQUATIONS, OR, WHEN DO SIMULATIONS REPRODUCE STATISTICS [J].
BERKOOZ, G .
NONLINEARITY, 1994, 7 (02) :313-328
[9]   Strong chaos without the butterfly effect in dynamical systems with feedback [J].
Boffetta, G ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :2291-2298
[10]  
Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO