Towards a gauge-polyvalent numerical relativity code

被引:20
作者
Alic, Daniela [1 ]
Bona, Carles [1 ]
Bona-Casas, Carles [1 ]
机构
[1] Univ Illes Balears, Dept Fis, Inst Appl Computat Community Code 0, E-07071 Palma de Mallorca, Spain
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 04期
关键词
D O I
10.1103/PhysRevD.79.044026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The gauge polyvalence of a new numerical code is tested, both in harmonic-coordinate simulations (gauge-waves test bed) and in singularity-avoiding coordinates (simple black-hole simulations, either with or without shift). The code is built upon an adjusted first-order flux-conservative version of the Z4 formalism and a recently proposed family of robust finite-difference high-resolution algorithms. An outstanding result is the long-term evolution (up to 1000M) of a black hole in normal coordinates (zero shift) without excision.
引用
收藏
页数:12
相关论文
共 34 条
  • [21] Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing
    Husa, Sascha
    Gonzalez, Jose A.
    Hannam, Mark
    Bruegmann, Bernd
    Sperhake, Ulrich
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (10)
  • [22] Numerical stability of the Alekseenko-Arnold evolution system compared to the ADM and BSSN systems
    Jansen, Nina
    Bruegmann, Bernd
    Tichy, Wolfgang
    [J]. PHYSICAL REVIEW D, 2006, 74 (08):
  • [23] Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations
    Kidder, LE
    Scheel, MA
    Teukolsky, SA
    [J]. PHYSICAL REVIEW D, 2001, 64 (06)
  • [24] Numerical experiments of adjusted Baumgarte-Shapiro-Shibata-Nakamura systems for controlling constraint violations
    Kiuchi, Kenta
    Shinkai, Hisa-aki
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [25] LISKOVETS A, 1965, J DIFF EQ JDEQAK, V1, P1308
  • [26] Strongly hyperbolic second order Einstein's evolution equations
    Nagy, G
    Ortiz, OE
    Reula, OA
    [J]. PHYSICAL REVIEW D, 2004, 70 (04):
  • [27] OSHER S, 1984, 8444 ICASE LANG RES
  • [28] Maximal slicing for puncture evolutions of Schwarzschild and Reissner-Nordstrom black holes -: art. no. 044006
    Reimann, B
    Brügmann, B
    [J]. PHYSICAL REVIEW D, 2004, 69 (04):
  • [29] Rusanov V., 1962, USSR Comput. Math. Math. Phys., V1, P304
  • [30] Magnetohydrodynamics in full general relativity: Formulation and tests
    Shibata, M
    Sekiguchi, Y
    [J]. PHYSICAL REVIEW D, 2005, 72 (04): : 1 - 24