Strongly hyperbolic second order Einstein's evolution equations

被引:76
作者
Nagy, G
Ortiz, OE
Reula, OA
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 04期
关键词
D O I
10.1103/PhysRevD.70.044012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In the same way, densitized Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodifferential reduction adds no extra equations to the system and so no extra constraints.
引用
收藏
页数:15
相关论文
共 37 条
[1]   Robust evolution system for numerical relativity -: art. no. 104014 [J].
Arbona, A ;
Bona, C ;
Massó, J ;
Stela, J .
PHYSICAL REVIEW D, 1999, 60 (10)
[2]  
Arnowitt R. L., 1962, GRAVITATION INTRO CU
[3]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[4]   3+1 covariant suite of numerical relativity evolution systems [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C .
PHYSICAL REVIEW D, 2002, 66 (08)
[5]   General-covariant evolution formalism for numerical relativity -: art. no. 104005 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2003, 67 (10)
[6]   HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1097-1099
[7]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[8]   Convergence and stability in numerical relativity [J].
Calabrese, G ;
Pullin, J ;
Sarbach, O ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 66 (04)
[9]   Stability properties of a formulation of Einstein's equations [J].
Calabrese, G ;
Pullin, J ;
Sarbach, O ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 66 (06)
[10]  
CALDERON A, 1962, P S FLUID DYN APPL M, V27