Strongly hyperbolic second order Einstein's evolution equations

被引:76
作者
Nagy, G
Ortiz, OE
Reula, OA
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 04期
关键词
D O I
10.1103/PhysRevD.70.044012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In the same way, densitized Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodifferential reduction adds no extra equations to the system and so no extra constraints.
引用
收藏
页数:15
相关论文
共 37 条
[11]  
Friedrich H., 2000, Lecture Notes in Physics
[12]  
Friedrichs K.O., 1968, PSEUDODIFFERENTIAL O
[13]  
GEROCH R, 1986, GEN RELATIVITY
[14]   A posteriori error estimation techniques in practical finite element analysis [J].
Grätsch, T ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 2005, 83 (4-5) :235-265
[15]  
GUSTAFSSON B, 1995, TIME DEPENDENT METHO
[16]  
Hadamard J., 1923, Lectures on Cauchy's problem in linear partial differential equations
[17]   PSEUDO-DIFFERENTIAL OPERATORS [J].
HORMANDE.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (03) :501-&
[18]  
Hormander L., 1967, P S PURE MATH, V10, P138
[19]   Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations [J].
Kidder, LE ;
Scheel, MA ;
Teukolsky, SA .
PHYSICAL REVIEW D, 2001, 64 (06)
[20]   AN ALGEBRA OF PSEUDO-DIFFERENTIAL OPERATORS [J].
KOHN, JJ ;
NIRENBER.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (1-2) :269-&