Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes

被引:71
作者
Sinitskii, Alexander [1 ]
Fursina, Alexandra A. [1 ]
Kosynkin, Dmitry V. [1 ]
Higginbotham, Amanda L. [1 ]
Natelson, Douglas [2 ]
Tour, James M. [1 ,3 ,4 ,5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Elect & Comp Engn, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
[4] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[5] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
GRAPHITE OXIDE; SHEETS; ROUTE; FILMS;
D O I
10.1063/1.3276912
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 degrees C and further annealed in Ar/H(2) at 900 degrees C; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on Si/SiO(2) substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs (similar to 35 S/cm) and mobility of charge carriers (0.5-3 cm(2)/V s) are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh H(2)SO(4)/KMnO(4) used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure. (C) 2009 American Institute of Physics. [doi:10.1063/1.3276912]
引用
收藏
页数:3
相关论文
共 25 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[4]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[5]   Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2008, 78 (08)
[6]   Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit [J].
Cresti, Alessandro ;
Roche, Stephan .
PHYSICAL REVIEW B, 2009, 79 (23)
[7]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398
[10]   Electronic transport properties of individual chemically reduced graphene oxide sheets [J].
Gomez-Navarro, Cristina ;
Weitz, R. Thomas ;
Bittner, Alexander M. ;
Scolari, Matteo ;
Mews, Alf ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2007, 7 (11) :3499-3503