An introduction to the synchronization of chaotic systems: Coupled skew tent maps

被引:123
作者
Hasler, M [1 ]
Maistrenko, YL [1 ]
机构
[1] UKRAINIAN ACAD SCI, INST MATH, UA-252601 KIEV, UKRAINE
关键词
chaos; Lyapunov exponents; nonlinear systems; synchronization;
D O I
10.1109/81.633874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this tutorial paper, various phenomena linked to the synchronization of chaotic systems are discussed using the simple example of two coupled skew tent maps. The phenomenon of locally riddled basins of attraction is explained using the Lyapunov exponents transversal to the synchronization manifold. The skew tent maps are coupled in two different ways, leading to quite different global dynamic behavior especially when the ideal system is perturbed bg parameter mismatch or noise, The linear coupling leads to intermittent desynchronization bursts of range amplitude, whereas for the nonlinear coupling the synchronization error is asymptotically uniformly bounded.
引用
收藏
页码:856 / 866
页数:11
相关论文
共 20 条
  • [1] Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
  • [2] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [3] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [4] From attractor to chaotic saddle: A tale of transverse instability
    Ashwin, P
    Buescu, J
    Stewart, I
    [J]. NONLINEARITY, 1996, 9 (03) : 703 - 737
  • [5] Billingsley P., 1965, ERGODIC THEORY INFOR
  • [6] Dmitriev A., 1995, Proceedings of the the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems. NDES '95, P287
  • [7] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [8] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [9] Gotz M, 1997, ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV, P1049, DOI 10.1109/ISCAS.1997.621920
  • [10] ENGINEERING CHAOS FOR ENCRYPTION AND BROAD-BAND COMMUNICATION
    HASLER, M
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 353 (1701): : 115 - 126