Imaging and controlling electron transport inside a quantum ring

被引:71
作者
Hackens, B.
Martins, F.
Ouisse, T.
Sellier, H.
Bollaert, S.
Wallart, X.
Cappy, A.
Chevrier, J.
Bayot, V.
Huant, S.
机构
[1] Univ Grenoble 1, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
[2] CNRS, F-38402 St Martin Dheres, France
[3] Catholic Univ Louvain, DICE Lab, CERMIN, B-1348 Louvain, Belgium
[4] IEMN, F-59652 Villeneuve Dascq, France
[5] CNRS, Etud Proprietes Elect Solides Lab, F-38042 Grenoble, France
关键词
D O I
10.1038/nphys459
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Traditionally, the understanding of quantum transport, coherent and ballistic(1), relies on the measurement of macroscopic properties such as the conductance. Although powerful when coupled to statistical theories, this approach cannot provide a detailed image of 'how electrons behave down there'. Ideally, understanding transport at the nanoscale would require tracking each electron inside the nanodevice. Significant progress towards this goal was obtained by combining scanning probe microscopy with transport measurements(2-7). Some studies even showed signatures of quantum transport in the surroundings of nanostructures(4-6). Here, scanning probe microscopy is used to probe electron propagation inside an open quantum ring exhibiting the archetype of electron-wave interference phenomena: the Aharonov - Bohm effect(8). Conductance maps recorded while scanning the biased tip of a cryogenic atomic force microscope above the quantum ring show that the propagation of electrons, both coherent and ballistic, can be investigated in situ, and can even be controlled by tuning the potential felt by electrons at the nanoscale.
引用
收藏
页码:826 / 830
页数:5
相关论文
共 15 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[3]   Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas [J].
Crook, R ;
Smith, CG ;
Simmons, MY ;
Ritchie, DA .
PHYSICAL REVIEW B, 2000, 62 (08) :5174-5178
[4]   Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard [J].
Crook, R ;
Smith, CG ;
Graham, AC ;
Farrer, I ;
Beere, HE ;
Ritchie, DA .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)
[5]  
Datta S., 1997, ELECT TRANSPORT MESO
[6]   Cryogenic scanning probe characterization of semiconductor nanostructures [J].
Eriksson, MA ;
Beck, RG ;
Topinka, M ;
Katine, JA ;
Westervelt, RM ;
Campman, KL ;
Gossard, AC .
APPLIED PHYSICS LETTERS, 1996, 69 (05) :671-673
[7]   Topographic mapping of the quantum hall liquid using a few-electron bubble [J].
Finkelstein, G ;
Glicofridis, PI ;
Ashoori, RC ;
Shayegan, M .
SCIENCE, 2000, 289 (5476) :90-94
[8]   Dwell-time-limited coherence in open quantum dots [J].
Hackens, B ;
Faniel, S ;
Gustin, C ;
Wallart, X ;
Bollaert, S ;
Cappy, A ;
Bayot, V .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)
[9]   Long dephasing time and high-temperature conductance fluctuations in an open InGaAs quantum dot [J].
Hackens, B ;
Delfosse, F ;
Faniel, S ;
Gustin, C ;
Boutry, H ;
Wallart, X ;
Bollaert, S ;
Cappy, A ;
Bayot, V .
PHYSICAL REVIEW B, 2002, 66 (24) :1-4
[10]   Control of Aharonov-Bohm oscillations in a AlGaAs/GaAs ring by asymmetric and symmetric gate biasing [J].
Krafft, B ;
Förster, A ;
van der Hart, A ;
Schäpers, T .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (04) :635-641