Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

被引:254
作者
Behrenfeld, M. J. [1 ]
Westberry, T. K. [1 ]
Boss, E. S. [2 ]
O'Malley, R. T. [1 ]
Siegel, D. A. [3 ,4 ]
Wiggert, J. D. [5 ]
Franz, B. A. [6 ]
McClain, C. R. [6 ]
Feldman, G. C. [6 ]
Doney, S. C. [7 ]
Moore, J. K. [8 ]
Dall'Olmo, G. [1 ]
Milligan, A. J. [1 ]
Lima, I. [7 ]
Mahowald, N. [9 ]
机构
[1] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[2] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA
[3] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[5] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[7] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
[8] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[9] Cornell Univ, Ithaca, NY 14850 USA
关键词
CHLOROPHYLL-A FLUORESCENCE; MESOSCALE IRON ENRICHMENT; QUANTUM YIELD; NATURAL FLUORESCENCE; INTERANNUAL VARIABILITY; REFLECTANCE SPECTRA; ELECTRON-TRANSPORT; COASTAL WATERS; WEST-COAST; LIGHT;
D O I
10.5194/bg-6-779-2009
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.
引用
收藏
页码:779 / 794
页数:16
相关论文
共 103 条
[11]   Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics [J].
Behrenfeld, Michael J. ;
Worthington, Kirby ;
Sherrell, Robert M. ;
Chavez, Francisco P. ;
Strutton, Peter ;
McPhaden, Michael ;
Shea, Donald M. .
NATURE, 2006, 442 (7106) :1025-1028
[12]   Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition [J].
Behrenfeld, MJ ;
Prasil, O ;
Kolber, ZS ;
Babin, M ;
Falkowski, PG .
PHOTOSYNTHESIS RESEARCH, 1998, 58 (03) :259-268
[13]   Carbon-based ocean productivity and phytoplankton physiology from space [J].
Behrenfeld, MJ ;
Boss, E ;
Siegel, DA ;
Shea, DM .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-14
[14]   Widespread iron limitation of phytoplankton in the South Pacific Ocean [J].
Behrenfeld, MJ ;
Kolber, ZS .
SCIENCE, 1999, 283 (5403) :840-843
[15]   Biospheric primary production during an ENSO transition [J].
Behrenfeld, MJ ;
Randerson, JT ;
McClain, CR ;
Feldman, GC ;
Los, SO ;
Tucker, CJ ;
Falkowski, PG ;
Field, CB ;
Frouin, R ;
Esaias, WE ;
Kolber, DD ;
Pollack, NH .
SCIENCE, 2001, 291 (5513) :2594-2597
[16]   Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions [J].
Boyd, P. W. ;
Jickells, T. ;
Law, C. S. ;
Blain, S. ;
Boyle, E. A. ;
Buesseler, K. O. ;
Coale, K. H. ;
Cullen, J. J. ;
de Baar, H. J. W. ;
Follows, M. ;
Harvey, M. ;
Lancelot, C. ;
Levasseur, M. ;
Owens, N. P. J. ;
Pollard, R. ;
Rivkin, R. B. ;
Sarmiento, J. ;
Schoemann, V. ;
Smetacek, V. ;
Takeda, S. ;
Tsuda, A. ;
Turner, S. ;
Watson, A. J. .
SCIENCE, 2007, 315 (5812) :612-617
[17]   A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization [J].
Boyd, PW ;
Watson, AJ ;
Law, CS ;
Abraham, ER ;
Trull, T ;
Murdoch, R ;
Bakker, DCE ;
Bowie, AR ;
Buesseler, KO ;
Chang, H ;
Charette, M ;
Croot, P ;
Downing, K ;
Frew, R ;
Gall, M ;
Hadfield, M ;
Hall, J ;
Harvey, M ;
Jameson, G ;
LaRoche, J ;
Liddicoat, M ;
Ling, R ;
Maldonado, MT ;
McKay, RM ;
Nodder, S ;
Pickmere, S ;
Pridmore, R ;
Rintoul, S ;
Safi, K ;
Sutton, P ;
Strzepek, R ;
Tanneberger, K ;
Turner, S ;
Waite, A ;
Zeldis, J .
NATURE, 2000, 407 (6805) :695-702
[18]   Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters:: Analysis and implications for bio-optical models [J].
Bricaud, A ;
Morel, A ;
Babin, M ;
Allali, K ;
Claustre, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C13) :31033-31044
[19]   VARIABILITY IN THE CHLOROPHYLL-SPECIFIC ABSORPTION-COEFFICIENTS OF NATURAL PHYTOPLANKTON - ANALYSIS AND PARAMETERIZATION [J].
BRICAUD, A ;
BABIN, M ;
MOREL, A ;
CLAUSTRE, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C7) :13321-13332
[20]  
Bruce D, 2004, ADV PHOTO RESPIRAT, V19, P497