miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases

被引:259
作者
Dykxhoorn, Derek M.
Wu, Yichao
Xie, Huangming
Yu, Fengyan
Lal, Ashish
Petrocca, Fabio
Martinvalet, Denis
Song, Erwei
Lim, Bing
Lieberman, Judy
机构
[1] Immune Disease Institute, Department of Pediatrics, Harvard Medical School, Boston, MA
[2] The John T. Macdonald Foundation of Human Genetics and the Department of Microbiology and Immunology, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
[3] Stem Cell and Developmental Biology, Genome Institute of Singapore
[4] Department of Breast Surgery, Sun-Yat-Sen University, Guangzhou
[5] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
来源
PLOS ONE | 2009年 / 4卷 / 09期
关键词
D O I
10.1371/journal.pone.0007181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The development of metastases involves the dissociation of cells from the primary tumor to penetrate the basement membrane, invade and then exit the vasculature to seed, and colonize distant tissues. The last step, establishment of macroscopic tumors at distant sites, is the least well understood. Four isogenic mouse breast cancer cell lines (67NR, 168FARN, 4TO7, and 4T1) that differ in their ability to metastasize when implanted into the mammary fat pad are used to model the steps of metastasis. Only 4T1 forms macroscopic lung and liver metastases. Because some miRNAs are dysregulated in cancer and affect cellular transformation, tumor formation, and metastasis, we examined whether changes in miRNA expression might explain the differences in metastasis of these cells. Methodology/Principal Findings: miRNA expression was analyzed by miRNA microarray and quantitative RT-PCR in isogenic mouse breast cancer cells with distinct metastatic capabilities. 4T1 cells that form macroscopic metastases had elevated expression of miR-200 family miRNAs compared to related cells that invade distant tissues, but are unable to colonize. Moreover, over-expressing miR-200 in 4TO7 cells enabled them to metastasize to lung and liver. These findings are surprising since the miR-200 family was previously shown to promote epithelial characteristics by inhibiting the transcriptional repressor Zeb2 and thereby enhancing E-cadherin expression. We confirmed these findings in these cells. The most metastatic 4T1 cells acquired epithelial properties (high expression of E-cadherin and cytokeratin-18) compared to the less metastatic cells. Conclusions/Significance: Expression of miR-200, which promotes a mesenchymal to epithelial cell transition (MET) by inhibiting Zeb2 expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell lines. These results suggest that for some tumors, tumor colonization at metastatic sites might be enhanced by MET. Therefore the epithelial nature of a tumor does not predict metastatic outcome.
引用
收藏
页数:14
相关论文
共 62 条
[1]  
Al-Hajj M, 2007, CURR OPIN ONCOL, V19, P61
[2]   MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer [J].
Asangani, I. A. ;
Rasheed, S. A. K. ;
Nikolova, D. A. ;
Leupold, J. H. ;
Colburn, N. H. ;
Post, S. ;
Allgayer, H. .
ONCOGENE, 2008, 27 (15) :2128-2136
[3]  
ASLAKSON CJ, 1992, CANCER RES, V52, P1399
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Transitions between epithelial and mesenchymal states in development and disease [J].
Baum, Buzz ;
Settleman, Jeffrey ;
Quinlan, Margaret P. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2008, 19 (03) :294-308
[6]   An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors [J].
Ben-Porath, Ittai ;
Thomson, Matthew W. ;
Carey, Vincent J. ;
Ge, Ruping ;
Bell, George W. ;
Regev, Aviv ;
Weinberg, Robert A. .
NATURE GENETICS, 2008, 40 (05) :499-507
[7]   Pre-EMTing metastasis?: Recapitulation of morphogenetic processes in cancer [J].
Berx, Geert ;
Raspe, Eric ;
Christofori, Gerhard ;
Thiery, Jean Paul ;
Sleeman, Jonathan P. .
CLINICAL & EXPERIMENTAL METASTASIS, 2007, 24 (08) :587-597
[8]  
Bracken C.P., 2009, CELL MOL LIFE SCI
[9]   A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition [J].
Bracken, Cameron P. ;
Gregory, Philip A. ;
Kolesnikoff, Natasha ;
Bert, Andrew G. ;
Wang, Jun ;
Shannon, M. Frances ;
Goodall, Gregory J. .
CANCER RESEARCH, 2008, 68 (19) :7846-7854
[10]   A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells [J].
Burk, Ulrike ;
Schubert, Joerg ;
Wellner, Ulrich ;
Schmalhofer, Otto ;
Vincan, Elizabeth ;
Spaderna, Simone ;
Brabletz, Thomas .
EMBO REPORTS, 2008, 9 (06) :582-589