A general pipeline for the development of anchor markers for comparative genomics in plants

被引:32
作者
Fredslund, Jakob
Madsen, Lene H.
Hougaard, Birgit K.
Nielsen, Anna Marie
Bertioli, David
Sandal, Niels
Stougaard, Jens
Schauser, Leif
机构
[1] Aarhus Univ, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Gene Express Lab, Dept Mol Biol, DK-8000 Aarhus, Denmark
[3] Univ Catolica Brasil, Programa Posgrad Biotecnol Genom, BR-70790160 Brasilia, DF, Brazil
关键词
D O I
10.1186/1471-2164-7-207
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Complete or near-complete genomic sequence information is presently only available for a few plant species representing a large phylogenetic diversity among plants. In order to effectively transfer this information to species lacking sequence information, comparative genomic tools need to be developed. Molecular markers permitting cross-species mapping along co-linear genomic regions are central to comparative genomics. These "anchor" markers, defining unique loci in genetic linkage maps of multiple species, are gene-based and possess a number of features that make them relatively sparse. To identify potential anchor marker sequences more efficiently, we have established an automated bioinformatic pipeline that combines multi-species Expressed Sequence Tags (EST) and genome sequence data. Results: Taking advantage of sequence data from related species, the pipeline identifies evolutionarily conserved sequences that are likely to define unique orthologous loci in most species of the same phylogenetic clade. The key features are the identification of evolutionarily conserved sequences followed by automated design of intron-flanking Polymerase Chain Reaction (PCR) primer pairs. Polymorphisms can subsequently be identified by size- or sequence variation of PCR products, amplified from mapping parents or populations. We illustrate our procedure in legumes and grasses and exemplify its application in legumes, where model plant studies and the genome- and EST-sequence data available have a potential impact on the breeding of crop species and on our understanding of the evolution of this large and diverse family. Conclusion: We provide a database of 459 candidate anchor loci which have the potential to serve as map anchors in more than 18,000 legume species, a number of which are of agricultural importance. For grasses, the database contains 1335 candidate anchor loci. Based on this database, we have evaluated 76 candidate anchor loci with respect to marker development in legume species with no sequence information available, demonstrating the validity of this approach.
引用
收藏
页数:10
相关论文
共 39 条
[21]   Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes [J].
Lyons, LA ;
Laughlin, TF ;
Copeland, NG ;
Jenkins, NA ;
Womack, JE ;
OBrien, SJ .
NATURE GENETICS, 1997, 15 (01) :47-56
[22]   Genomics and synteny [J].
McCouch, SR .
PLANT PHYSIOLOGY, 2001, 125 (01) :152-155
[23]   A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae) [J].
Moretzsohn, MC ;
Leoi, L ;
Proite, K ;
Guimaraes, PM ;
Leal-Bertioli, SCM ;
Gimenes, MA ;
Martins, WS ;
Valls, JFM ;
Grattapaglia, D ;
Bertioli, DJ .
THEORETICAL AND APPLIED GENETICS, 2005, 111 (06) :1060-1071
[24]   Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana [J].
Mudge, Joann ;
Cannon, Steven B. ;
Kalo, Peter ;
Oldroyd, Giles Ed ;
Roe, Bruce A. ;
Town, Christopher D. ;
Young, Nevin D. .
BMC PLANT BIOLOGY, 2005, 5 (1)
[25]   Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics [J].
Paterson, AH ;
Bowers, JE ;
Chapman, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9903-9908
[26]   TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets [J].
Pertea, G ;
Huang, XQ ;
Liang, F ;
Antonescu, V ;
Sultana, R ;
Karamycheva, S ;
Lee, Y ;
White, J ;
Cheung, F ;
Parvizi, B ;
Tsai, J ;
Quackenbush, J .
BIOINFORMATICS, 2003, 19 (05) :651-652
[27]   Placing paleopolyploidy in relation to taxon divergence: A phylogenetic analysis in legumes using 39 gene families [J].
Pfeil, BE ;
Schlueter, JA ;
Shoemaker, RC ;
Doyle, JJ .
SYSTEMATIC BIOLOGY, 2005, 54 (03) :441-454
[28]   The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species [J].
Quackenbush, J ;
Cho, J ;
Lee, D ;
Liang, F ;
Holt, I ;
Karamycheva, S ;
Parvizi, B ;
Pertea, G ;
Sultana, R ;
White, J .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :159-164
[29]   Genetics of symbiosis in Lotus japonicus:: Recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci [J].
Sandal, N ;
Petersen, TR ;
Murray, J ;
Umehara, Y ;
Karas, B ;
Yano, K ;
Kumagai, H ;
Yoshikawa, M ;
Saito, K ;
Hayashi, M ;
Murakami, Y ;
Wang, XW ;
Hakoyama, T ;
Imaizumi-Anraku, H ;
Sato, S ;
Kato, T ;
Chen, WL ;
Hossain, MS ;
Shibata, S ;
Wang, TL ;
Yokota, K ;
Larsen, K ;
Kanamori, N ;
Madsen, E ;
Radutoiu, S ;
Madsen, LH ;
Radu, TG ;
Krusell, L ;
Ooki, Y ;
Banba, M ;
Betti, M ;
Rispail, N ;
Skot, L ;
Tuck, E ;
Perry, J ;
Yoshida, S ;
Vickers, K ;
Pike, J ;
Mulder, L ;
Charpentier, M ;
Müller, J ;
Ohtomo, R ;
Kojima, T ;
Ando, S ;
Marquez, AJ ;
Gresshoff, PM ;
Harada, K ;
Webb, J ;
Hata, S ;
Suganuma, N .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (01) :80-91
[30]  
Schlueter JA, 2004, GENOME, V47, P868, DOI [10.1139/g04-047, 10.1139/G04-047]