Approximating uniform triangular meshes in polygons

被引:6
作者
Aurenhammer, F
Katoh, N [1 ]
Kojima, H
Ohsaki, M
Xu, YF
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Architecture & Architectural Syst, Sakyo Ku, Kyoto 6068501, Japan
[2] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[3] Xian Jiaotong Univ, Sch Management, Xian 710049, Peoples R China
关键词
triangular mesh; Delaunay triangulation; uniform mesh; approximation;
D O I
10.1016/S0304-3975(01)00407-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of triangulating a convex polygon using n Steiner points under the following optimality criteria: (1) minimizing the overall edge length ratio; (2) minimizing the maximum edge length; and (3) minimizing the maximum triangle perimeter. We establish a relation of these problems to a certain extreme packing problem. Based on this relationship, we develop a heuristic producing constant approximations for all the optimality criteria above (provided n is chosen sufficiently large). That is, the produced triangular mesh is uniform in these respects. The method is easy to implement and runs in O(n(2) logn) time and O(n) space. The observed runtime is much less. Moreover, for criterion (1) the method works-within the same complexity and approximation bounds-for arbitrary polygons with possible holes, and for criteria (2) and (3) it does so for a large subclass. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:879 / 895
页数:17
相关论文
共 19 条
[1]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[2]   TRIANGULATING POLYGONS WITHOUT LARGE ANGLES [J].
BERN, M ;
DOBKIN, D ;
EPPSTEIN, D .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :171-192
[3]   PROVABLY GOOD MESH GENERATION [J].
BERN, M ;
EPPSTEIN, D ;
GILBERT, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 48 (03) :384-409
[4]  
Bern M., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P221, DOI 10.1145/177424.177974
[5]  
BERN M, 1992, COMPUTING EUCLIDEAN, P47
[6]  
CHEW P, 1993, P 9 S COMP GEOM, P274
[7]   A QUADRATIC TIME ALGORITHM FOR THE MINMAX LENGTH TRIANGULATION [J].
EDELSBRUNNER, H ;
TAN, TS .
SIAM JOURNAL ON COMPUTING, 1993, 22 (03) :527-551
[8]  
Feder T., 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, P434, DOI 10.1145/62212.62255
[9]  
Fejes Toth G., 1997, HDB DISCRETE COMPUTA, P19
[10]   CLUSTERING TO MINIMIZE THE MAXIMUM INTERCLUSTER DISTANCE [J].
GONZALEZ, TF .
THEORETICAL COMPUTER SCIENCE, 1985, 38 (2-3) :293-306