Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance

被引:101
作者
Ribordy, G
Gisin, N
Guinnard, O
Stucki, D
Wegmuller, M
Zbinden, H
机构
[1] id Quant SA, CH-1205 Geneva, Switzerland
[2] Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1080/09500340410001677094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
InGaAs/InP avalanche photodiodes operated in the so-called Geiger mode currently represent the best solution to detect single-photon beyond 900 nm. They cover the 1100-1650 nm wavelength interval, which includes in particular the two windows used for optical communications (1310 and 1550 nm). A detection efficiency at 1550 nm of 10% with a dark count probability of 10(-5) ns(-1) is common, although significant variations can be encountered. At this efficiency, a FWHM temporal response of 300 ps can be achieved. Afterpulses caused by charges trapped by defects in the high field region of the junction constitute the main performance impairment phenomenon. They enhance the dark count probability and reduce out-of-gate detector blindness. These photon counting detectors can be used in optical time-domain reflectometry to improve the spatial resolution and reduce dead-zone effects. Quantum key distribution over metropolitan area networks also constitutes an important application.
引用
收藏
页码:1381 / 1398
页数:18
相关论文
共 17 条
[1]   An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light [J].
Bethune, DS ;
Risk, WP .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (03) :340-347
[2]   Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits [J].
Brainis, E ;
Lamoureux, LP ;
Cerf, NJ ;
Emplit, P ;
Haelterman, M ;
Massar, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[3]   Avalanche photodiodes and quenching circuits for single-photon detection [J].
Cova, S ;
Ghioni, M ;
Lacaita, A ;
Samori, C ;
Zappa, F .
APPLIED OPTICS, 1996, 35 (12) :1956-1976
[4]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[5]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[6]   MULTICHANNEL PHOTON-COUNTING BACKSCATTER MEASUREMENTS ON MONOMODE FIBER [J].
HEALEY, P .
ELECTRONICS LETTERS, 1981, 17 (20) :751-752
[7]   Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm [J].
Hiskett, PA ;
Buller, GS ;
Loudon, AY ;
Smith, JM ;
Gontijo, I ;
Walker, AC ;
Townsend, PD ;
Robertson, MJ .
APPLIED OPTICS, 2000, 39 (36) :6818-6829
[8]   SINGLE-PHOTON DETECTION BEYOND 1-MU-M - PERFORMANCE OF COMMERCIALLY AVAILABLE GERMANIUM PHOTODIODES [J].
LACAITA, A ;
FRANCESE, PA ;
ZAPPA, F ;
COVA, S .
APPLIED OPTICS, 1994, 33 (30) :6902-6918
[9]   Single-photon detection beyond 1 mu m: Performance of commercially available InGaAs/InP detectors [J].
Lacaita, A ;
Zappa, F ;
Cova, S ;
Lovati, P .
APPLIED OPTICS, 1996, 35 (16) :2986-2996
[10]   SINGLE-PHOTON OPTICAL-TIME-DOMAIN REFLECTOMETER AT 1.3 MU-M WITH 5-CM RESOLUTION AND HIGH-SENSITIVITY [J].
LACAITA, AL ;
FRANCESE, PA ;
COVA, SD ;
RIPARMONTI, G .
OPTICS LETTERS, 1993, 18 (13) :1110-1112