Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism

被引:28
作者
Huang, WH [1 ]
机构
[1] Nanyang Technol Univ, Nanyang Business Sch, Singapore 639798, Singapore
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.R1012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An adaptive adjustment mechanism is applied to stabilize multidimensional dynamical systems. Without utilizing any prior knowledge of the system itself, nor extra external central signals, the mechanism can ensure a large class of chaotic systems to converge to their "generic" stable periodic orbits.
引用
收藏
页码:R1012 / R1015
页数:4
相关论文
共 13 条
[1]   Reachability of chaotic dynamic systems [J].
Alleyne, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3751-3754
[2]  
[Anonymous], 1958, Q J EC OXFORD U PRES
[3]   Stabilizing effect of periodic or eventually periodic constant pulses on chaotic dynamics [J].
Chau, NP .
PHYSICAL REVIEW E, 1998, 57 (06) :7317-7320
[4]   Feedback control in coupled map lattices [J].
Gade, PM .
PHYSICAL REVIEW E, 1998, 57 (06) :7309-7312
[5]   CONTROL OF CHAOS IN UNIDIMENSIONAL MAPS [J].
GUEMEZ, J ;
MATIAS, MA .
PHYSICS LETTERS A, 1993, 181 (01) :29-32
[6]   Controlling one-dimensional unimodal population maps by harvesting at a constant rate [J].
Gueron, S .
PHYSICAL REVIEW E, 1998, 57 (03) :3645-3648
[7]   THE ORIGIN OF PREDICTABLE DYNAMIC BEHAVIOR [J].
HEINER, RA .
JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 1989, 12 (02) :233-257
[8]  
HUANG W, 1992, UNPUB
[9]   STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR [J].
HUNT, ER .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :1953-1955
[10]   Control of high-dimensional chaos in systems with symmetry [J].
Locher, M ;
Hunt, ER .
PHYSICAL REVIEW LETTERS, 1997, 79 (01) :63-66