Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model

被引:82
作者
Mu, Mu [1 ]
Zhang, Zhiyue
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing, Peoples R China
关键词
D O I
10.1175/JAS3703.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Conditional nonlinear optimal perturbations (CNOPs) of a two-dimensional quasigeostrophic model are obtained numerically. The CNOP is the initial perturbation whose nonlinear evolution attains the maximum value of the cost function, which is constructed according to the physical problems of interests with physical constraint conditions. The difference between the CNOP and a linear singular vector is compared. The results demonstrate that CNOPs catch the nonlinear effects of the model on the evolutions of the initial perturbations. These results suggest that CNOPs are applicable to the study of predictability and sensitivity analysis when nonlinearity is of importance.
引用
收藏
页码:1587 / 1604
页数:18
相关论文
共 56 条
  • [1] Arakawa A., 1966, J COMPUT PHYS, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, 10.1016/0021-9991(66)90015-5]
  • [2] Predictability in the large: An extension of the concept of Lyapunov exponent
    Aurell, E
    Boffetta, G
    Crisanti, A
    Paladin, G
    Vulpiani, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01): : 1 - 26
  • [3] Barkmeijer J, 1996, J ATMOS SCI, V53, P2838, DOI 10.1175/1520-0469(1996)053<2838:CFGPFT>2.0.CO
  • [4] 2
  • [5] Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO
  • [6] 2
  • [7] Boggs P.T., 2008, ACTA NUMER, V4, P1, DOI DOI 10.1017/S0962492900002518
  • [8] Sequential quadratic programming for large-scale nonlinear optimization
    Boggs, PT
    Tolle, JW
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 124 (1-2) : 123 - 137
  • [9] BUIZZA R, 1995, J ATMOS SCI, V52, P1434, DOI 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO
  • [10] 2