Symplectic integrators from composite operator factorizations

被引:228
作者
Chin, SA
机构
[1] Center for Theoretical Physics, Department of Physics, Texas A and M University, College Station, TX USA
基金
美国国家科学基金会;
关键词
symplectic integrators; operator factorization;
D O I
10.1016/S0375-9601(97)00003-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I derive fourth order symplectic integrators by factorizing the exponential of two operators in terms of an additional higher order composite operator with positive coefficients, One algorithm requires only one evaluation of the force and one evaluation of the force and its gradient. When applied to Kepler's problem, the energy error function associated with these algorithms are approximately 10 to 80 times smaller than the fourth order Forest-Ruth, Candy-Rozmus integrator.
引用
收藏
页码:344 / 348
页数:5
相关论文
共 13 条
[1]   A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS [J].
CANDY, J ;
ROZMUS, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) :230-256
[2]   QUADRATIC DIFFUSION MONTE-CARLO ALGORITHMS FOR SOLVING ATOMIC MANY-BODY PROBLEMS [J].
CHIN, SA .
PHYSICAL REVIEW A, 1990, 42 (12) :6991-7005
[3]   LIE SERIES AND INVARIANT FUNCTIONS FOR ANALYTIC SYMPLECTIC MAPS [J].
DRAGT, AJ ;
FINN, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (12) :2215-2227
[4]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[5]   THE ACCURACY OF SYMPLECTIC INTEGRATORS [J].
MCLACHLAN, RI ;
ATELA, P .
NONLINEARITY, 1992, 5 (02) :541-562
[6]   COMPOSITION METHODS IN THE PRESENCE OF SMALL PARAMETERS [J].
MCLACHLAN, RI .
BIT, 1995, 35 (02) :258-268
[7]   A CANONICAL INTEGRATION TECHNIQUE [J].
RUTH, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) :2669-2671
[8]   GENERAL-THEORY OF HIGHER-ORDER DECOMPOSITION OF EXPONENTIAL OPERATORS AND SYMPLECTIC INTEGRATORS [J].
SUZUKI, M .
PHYSICS LETTERS A, 1992, 165 (5-6) :387-395
[9]   HYBRID EXPONENTIAL PRODUCT-FORMULAS FOR UNBOUNDED OPERATORS WITH POSSIBLE APPLICATIONS TO MONTE-CARLO SIMULATIONS [J].
SUZUKI, M .
PHYSICS LETTERS A, 1995, 201 (5-6) :425-428
[10]   FRACTAL DECOMPOSITION OF EXPONENTIAL OPERATORS WITH APPLICATIONS TO MANY-BODY THEORIES AND MONTE-CARLO SIMULATIONS [J].
SUZUKI, M .
PHYSICS LETTERS A, 1990, 146 (06) :319-323