Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures

被引:61
作者
Odanaka, S [1 ]
机构
[1] Osaka Univ, Cybermedia Ctr, Comp Assisted Sci Div, Toyonaka, Osaka 5600043, Japan
关键词
density gradient theory; discretization; double-gate MOSFET; MOSFET; quantum confinement; quantum drift-diffusion (QDD) model; semiconductor transport;
D O I
10.1109/TCAD.2004.828128
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a hew approach to construct a multidimensional discretization scheme of quantum drift-diffusion (QDD) model (or density gradient model) arising in MOSFET structures. The discretization is performed for the stationary QDD equations replaced by an equivalent form, employing an exponential transformation of variables. A multidimensional discretization scheme is constructed by making use of an exponential-fitting method in a class of conservative difference schemes, applying the finite-volume method, which leads to a consistent generalization of the Scharfetter-Gummel expression to the nonlinear Sturm-Liouville type equation. The discretization method is evaluated in a variety of MOSFET structures, including a double-gat,e MOSFET With thin body layer. The discretization method provides numerical stability and accuracy for carrier transport simulations with quantum confinement effects in ultrasmall MOSFET structures.
引用
收藏
页码:837 / 842
页数:6
相关论文
共 18 条
[1]  
Ancona MG, 2000, IEEE T ELECTRON DEV, V47, P2310, DOI 10.1109/16.887013
[2]   MACROSCOPIC PHYSICS OF THE SILICON INVERSION LAYER [J].
ANCONA, MG ;
TIERSTEN, HF .
PHYSICAL REVIEW B, 1987, 35 (15) :7959-7965
[3]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[4]   Nonlinear discretization scheme for the density-gradient equations [J].
Ancona, MG ;
Biegel, BA .
2000 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2000, :196-199
[5]  
[Anonymous], J COMPUT ELECT
[6]   Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density-gradient simulation study [J].
Asenov, A ;
Slavcheva, G ;
Brown, AR ;
Davies, JH ;
Saini, S .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (04) :722-729
[7]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[8]   THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTOR-DEVICES [J].
GARDNER, CL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :409-427
[9]  
Lyumkis E, 2002, SISPAD 2002: INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, P271, DOI 10.1109/SISPAD.2002.1034570
[10]  
Marchuk G. I., 1982, METHODS NUMERICAL MA