Why do eukaryotic proteins contain more intrinsically disordered regions?

被引:62
作者
Basile, Walter [1 ,2 ]
Salvatore, Marco [1 ,2 ]
Bassot, Claudio [1 ,2 ]
Elofsson, Arne [1 ,2 ,3 ]
机构
[1] Stockholm Univ, Sci Life Lab, Solna, Sweden
[2] Stockholm Univ, Dept Biochem & Biophys, Stockholm, Sweden
[3] Swedish E Sci Res Ctr SeRC, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
AMINO-ACID-COMPOSITION; FAMILIES DATABASE; DOMAIN; EVOLUTION; PREDICTION; CLASSIFICATION; PROTEOMES; PHOSPHORYLATION; DIVERSITY; EXPANSION;
D O I
10.1371/journal.pcbi.1007186
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsic disorder is more abundant in eukaryotic than prokaryotic proteins. Methods predicting intrinsic disorder are based on the amino acid sequence of a protein. Therefore, there must exist an underlying difference in the sequences between eukaryotic and prokaryotic proteins causing the (predicted) difference in intrinsic disorder. By comparing proteins, from complete eukaryotic and prokaryotic proteomes, we show that the difference in intrinsic disorder emerges from the linker regions connecting Pfam domains. Eukaryotic proteins have more extended linker regions, and in addition, the eukaryotic linkers are significantly more disordered, 38% vs. 12-16% disordered residues. Next, we examined the underlying reason for the increase in disorder in eukaryotic linkers, and we found that the changes in abundance of only three amino acids cause the increase. Eukaryotic proteins contain 8.6% serine; while prokaryotic proteins have 6.5%, eukaryotic proteins also contain 5.4% proline and 5.3% isoleucine compared with 4.0% proline and approximate to 7.5% isoleucine in the prokaryotes. All these three differences contribute to the increased disorder in eukaryotic proteins. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. The differences are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. The observation that differences in the abundance of three amino acids cause the difference in disorder between eukaryotic and prokaryotic proteins raises the question: Are amino acid frequencies different in eukaryotic linkers because the linkers are more disordered or do the differences cause the increased disorder?
引用
收藏
页数:20
相关论文
共 68 条
  • [1] Evolution of intrinsic disorder in eukaryotic proteins
    Ahrens, Joseph B.
    Nunez-Castilla, Janelle
    Siltberg-Liberles, Jessica
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2017, 74 (17) : 3163 - 3174
  • [2] Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis
    Akashi, H
    Gojobori, T
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) : 3695 - 3700
  • [3] Apic G, 2001, Bioinformatics, V17 Suppl 1, pS83
  • [4] Domain combinations in archaeal, eubacterial and eukaryotic proteomes
    Apic, G
    Gough, J
    Teichmann, SA
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (02) : 311 - 325
  • [5] The Universal Protein Resource (UniProt) in 2010
    Apweiler, Rolf
    Martin, Maria Jesus
    O'Donovan, Claire
    Magrane, Michele
    Alam-Faruque, Yasmin
    Antunes, Ricardo
    Barrell, Daniel
    Bely, Benoit
    Bingley, Mark
    Binns, David
    Bower, Lawrence
    Browne, Paul
    Chan, Wei Mun
    Dimmer, Emily
    Eberhardt, Ruth
    Fedotov, Alexander
    Foulger, Rebecca
    Garavelli, John
    Huntley, Rachael
    Jacobsen, Julius
    Kleen, Michael
    Laiho, Kati
    Leinonen, Rasko
    Legge, Duncan
    Lin, Quan
    Liu, Wudong
    Luo, Jie
    Orchard, Sandra
    Patient, Samuel
    Poggioli, Diego
    Pruess, Manuela
    Corbett, Matt
    di Martino, Giuseppe
    Donnelly, Mike
    van Rensburg, Pieter
    Bairoch, Amos
    Bougueleret, Lydie
    Xenarios, Ioannis
    Altairac, Severine
    Auchincloss, Andrea
    Argoud-Puy, Ghislaine
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bolleman, Jerven
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D142 - D148
  • [6] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [7] High GC content causes orphan proteins to be intrinsically disordered
    Basile, Walter
    Sachenkova, Oxana
    Light, Sara
    Elofsson, Arne
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (03)
  • [8] Expansion of protein domain repeats
    Bjorklund, Asa K.
    Ekman, Diana
    Elofsson, Arne
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (08) : 959 - 970
  • [9] Sequence and structure-based prediction of eukaryotic protein phosphorylation sites
    Blom, N
    Gammeltoft, S
    Brunak, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) : 1351 - 1362
  • [10] TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder
    Campen, Andrew
    Williams, Ryan M.
    Brown, Celeste J.
    Meng, Jingwei
    Uversky, Vladimir N.
    Dunker, A. Keith
    [J]. PROTEIN AND PEPTIDE LETTERS, 2008, 15 (09) : 956 - 963