Lithographically patterned nanowire electrodeposition

被引:272
作者
Menke, E. J.
Thompson, M. A.
Xiang, C.
Yang, L. C.
Penner, R. M. [1 ]
机构
[1] Univ Calif Irvine, Inst Surface & Interface Sci, Irvine, CA 92679 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92679 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1759
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanowire fabrication methods can be classified either as 'top down', involving photo-or electron-beam lithography, or 'bottom up', involving the synthesis of nanowires from molecular precursors. Lithographically patterned nanowire electrodeposition (LPNE) combines attributes of photolithography with the versatility of bottom-up electrochemical synthesis. Photolithography defines the position of a sacrificial nickel nanoband electrode, which is recessed into a horizontal trench. This trench acts as a 'nanoform' to de. ne the thickness of an incipient nanowire during its electrodeposition. The electrodeposition duration determines the width of the nanowire. Removal of the photoresist and nickel exposes a polycrystalline nanowire-composed of gold, platinum or palladium-characterized by thickness and width that can be independently controlled down to 18 and 40 nm, respectively. Metal nanowires prepared by LPNE may have applications in chemical sensing and optical signal processing, and as interconnects in nanoelectronic devices.
引用
收藏
页码:914 / 919
页数:6
相关论文
共 25 条
[1]   NEW APPROACH TO PROJECTION-ELECTRON LITHOGRAPHY WITH DEMONSTRATED 0.1 MU-M LINEWIDTH [J].
BERGER, SD ;
GIBSON, JM .
APPLIED PHYSICS LETTERS, 1990, 57 (02) :153-155
[2]   PROJECTION ELECTRON-BEAM LITHOGRAPHY - A NEW APPROACH [J].
BERGER, SD ;
GIBSON, JM ;
CAMARDA, RM ;
FARROW, RC ;
HUGGINS, HA ;
KRAUS, JS ;
LIDDLE, JA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (06) :2996-2999
[3]   A study of the size effect on the temperature-dependent resistivity of bismuth nanowires with rectangular cross-sections [J].
Chiu, P ;
Shih, I .
NANOTECHNOLOGY, 2004, 15 (11) :1489-1492
[4]   Size effects in the electrical resistivity of polycrystalline nanowires [J].
Durkan, C ;
Welland, ME .
PHYSICAL REVIEW B, 2000, 61 (20) :14215-14218
[5]  
F Allen J Bard L.R., 2001, Electrochemical Methods: Fundamentals and Applications
[6]   The conductivity of thin metallic films according to the electron theory of metals [J].
Fuchs, K .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 :100-108
[7]   General technique for fabricating large arrays of nanowires [J].
Jorritsma, J ;
Gijs, MAM ;
Kerkhof, JM ;
Stienen, JGH .
NANOTECHNOLOGY, 1996, 7 (03) :263-265
[8]   Space-charge effects in projection electron-beam lithography: Results from the SCALPEL proof-of-lithography system [J].
Liddle, JA ;
Blakey, MI ;
Bolan, K ;
Farrow, RC ;
Gallatin, GM ;
Kasica, R ;
Katsap, V ;
Knurek, CS ;
Li, J ;
Mkrtchyan, M ;
Novembre, AE ;
Ocola, L ;
Orphanos, PA ;
Peabody, ML ;
Stanton, ST ;
Teffeau, K ;
Waskiewicz, WK ;
Munro, E .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (02) :476-481
[9]   The temperature dependence of resistivity in thin metal films [J].
Marom, H ;
Eizenberg, M .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) :3319-3323
[10]   Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam [J].
Marzi, GD ;
Iacopino, D ;
Quinn, AJ ;
Redmond, G .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) :3458-3462