The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion

被引:170
作者
Heymann, P
Gerads, M
Schaller, M
Dromer, F
Winkelmann, G
Ernst, JF
机构
[1] Univ Dusseldorf, Inst Mikrobiol, D-40225 Dusseldorf, Germany
[2] Univ Tubingen, Inst Mikrobiol & Biotechnol, Tubingen, Germany
[3] Univ Munich, Dermatol Klin, Munich, Germany
[4] Univ Munich, Poliklin Dermatol & Allergol, Munich, Germany
[5] Inst Pasteur, Unite Mycol Mol, Paris 15, France
关键词
D O I
10.1128/IAI.70.9.5246-5255.2002
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The human fungal pathogen Candida albicans contains a close homologue of yeast siderophore transporters, designated Sit1p/Arn1p. We have characterized the function of SIT1 in C. albicans by constructing sit1 deletion strains and testing their virulence and ability to utilize a range of siderophores and other iron complexes. sit1 mutant strains are defective in the uptake of ferrichrome-type siderophores including ferricrocin, ferrichrysin, ferrirubin, coprogen, and triacetylfusarinine C. A mutation of FTR1 did not impair the use of these siderophores but did affect the uptake of ferrioxamines E and B, as well as of ferric citrate, indicating that their utilization was independent of Sit1p. Hemin was a source of iron for both sit1 and ftr1 mutants, suggesting a pathway of hemin uptake distinct from that of siderophores and iron salts. Heterologous expression of SIT1 in the yeast Saccharomyces cerevisiae confirmed the function of Sit1p as a transporter for ferrichrome-type siderophores. The sit1 mutant was defective in infection of a reconstituted human epithelium as a model for human oral mucosa, while the SIT1 strain was invasive. In contrast, both sit1 and SIT1 strains were equally virulent in the mouse model of systemic infection. These results suggest that siderophore uptake by Sit1p/Arn1p is required in a specific process of C. albicans infection, namely epithelial invasion and penetration, while in the blood or within organs other sources of iron, including heme, may be used.
引用
收藏
页码:5246 / 5255
页数:10
相关论文
共 51 条
[1]   Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae [J].
Ardon, O ;
Bussey, H ;
Philpott, C ;
Ward, DM ;
Davis-Kaplan, S ;
Verroneau, S ;
Jiang, B ;
Kaplan, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (46) :43049-43055
[2]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[3]   Molecular biology of iron acquisition in Saccharomyces cerevisiae [J].
Askwith, CC ;
deSilva, D ;
Kaplan, J .
MOLECULAR MICROBIOLOGY, 1996, 20 (01) :27-34
[4]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[5]   Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans [J].
Bockmühl, DP ;
Krishnamurthy, S ;
Gerads, M ;
Sonneborn, A ;
Ernst, JF .
MOLECULAR MICROBIOLOGY, 2001, 42 (05) :1243-1257
[6]   FERRIC REDUCTASE OF SACCHAROMYCES-CEREVISIAE - MOLECULAR CHARACTERIZATION, ROLE IN IRON UPTAKE, AND TRANSCRIPTIONAL CONTROL BY IRON [J].
DANCIS, A ;
ROMAN, DG ;
ANDERSON, GJ ;
HINNEBUSCH, AG ;
KLAUSNER, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3869-3873
[7]   The pH of the host niche controls gene expression in and virulence of Candida albicans [J].
De Bernardis, F ;
Mühlschlegel, FA ;
Cassone, A ;
Fonzi, WA .
INFECTION AND IMMUNITY, 1998, 66 (07) :3317-3325
[8]  
DIX DR, 1994, J BIOL CHEM, V269, P26092
[9]   A multicopper oxidase gene from Candida albicans:: cloning, characterization and disruption [J].
Eck, R ;
Hundt, S ;
Härtl, A ;
Roemer, E ;
Künkel, W .
MICROBIOLOGY-UK, 1999, 145 :2415-2422
[10]  
FONZI WA, 1993, GENETICS, V134, P717