Degradative transport of cationic amphiphilic drugs across phospholipid bilayers

被引:64
作者
Baciu, Magdalena
Sebai, Sarra C.
Ces, Oscar
Mulet, Xavier
Clarke, James A.
Shearman, Gemma C.
Law, Robert V.
Templer, Richard H.
Plisson, Christophe
Parker, Christine A.
Gee, Antony
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] GlaxoSmithKline Inc, PET Imaging Dept, Addenbrookes Hosp, ACCI, Cambridge CB2 2GG, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 364卷 / 1847期
关键词
drug delivery; membrane; phospholipid degradation; passive diffusion; translocation;
D O I
10.1098/rsta.2006.1842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug molecules must cross multiple cell membrane barriers to reach their site of action. We present evidence that one of the largest classes of pharmaceutical drug molecules, the cationic amphiphilic drugs (CADs), does so via a catalytic reaction that degrades the phospholipid fabric of the membrane. We find that CADs partition rapidly to the polar-apolar region of the membrane. At physiological pH, the protonated groups on the CAD catalyse the acid hydrolysis of the ester linkage present in the phospholipid chains, producing a fatty acid and a single-chain lipid. The single-chain lipids rapidly destabilize the membrane, causing membranous fragments to separate and diffuse away from the host. These membrane fragments carry the drug molecules with them. The entire process, from drug adsorption to drug release within micelles, occurs on a time-scale of seconds, compatible with in vivo drug diffusion rates. Given the rate at which the reaction occurs, it is probable that this process is a significant mechanism for drug transport.
引用
收藏
页码:2597 / 2614
页数:18
相关论文
共 16 条
  • [1] LIPOSOME ELECTROFORMATION
    ANGELOVA, MI
    DIMITROV, DS
    [J]. FARADAY DISCUSSIONS, 1986, 81 : 303 - +
  • [2] Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress
    Attard, GS
    Templer, RH
    Smith, WS
    Hunt, AN
    Jackowski, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) : 9032 - 9036
  • [3] Aggregate structure in dilute aqueous dispersions of phospholipids, fatty acids, and lysophospholipids
    Bergstrand, N
    Edwards, K
    [J]. LANGMUIR, 2001, 17 (11) : 3245 - 3253
  • [4] INTERACTIONS OF LYSO 1-PALMITOYLPHOSPHATIDYLCHOLINE WITH PHOSPHOLIPIDS - A C-13 AND P-31 NMR-STUDY
    BHAMIDIPATI, SP
    HAMILTON, JA
    [J]. BIOCHEMISTRY, 1995, 34 (16) : 5666 - 5677
  • [5] Metabolism and disposition kinetics of nicotine
    Hukkanen, J
    Jacob, P
    Benowitz, NL
    [J]. PHARMACOLOGICAL REVIEWS, 2005, 57 (01) : 79 - 115
  • [6] INTRAMOLECULAR AND INTERMOLECULAR H-1-H-1 NUCLEAR OVERHAUSER EFFECT STUDIES ON THE INTERACTIONS OF CHLORPROMAZINE WITH LECITHIN VESICLES
    KURODA, Y
    KITAMURA, K
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (01) : 1 - 6
  • [7] Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    Lipinski, CA
    Lombardo, F
    Dominy, BW
    Feeney, PJ
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 1997, 23 (1-3) : 3 - 25
  • [8] Characterisation of a potential biomarker of phospholipidosis from amiodarone-treated rats
    Mortuza, GB
    Neville, WA
    Delaney, J
    Waterfield, CJ
    Camilleri, P
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2003, 1631 (02): : 136 - 146
  • [9] Dynorphin induced magnetic ordering in lipid bilayers as studied by 31P NMR spectroscopy
    Naito, A
    Nagao, T
    Obata, M
    Shindo, Y
    Okamoto, M
    Yokoyama, S
    Tuzi, S
    Saitô, H
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2002, 1558 (01): : 34 - 44
  • [10] Design and development of polymers for gene delivery
    Pack, DW
    Hoffman, AS
    Pun, S
    Stayton, PS
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2005, 4 (07) : 581 - 593